MOLECULAR-GENETIC FEATURES OF COLORECTAL TUMORS IN PERITONEAL CARCINOMATOSIS AND LIVER METASTASES (review)
https://doi.org/10.33878/2073-7556-2020-19-4-177-187
Abstract
AIM: to analyze the literature on the molecular genetic characteristics in patients with peritoneal carcinomatosis and liver metastases of colorectal cancer.
PATIENTS AND METHODS: RSCI, Google Scoolar, PubMed, Web of Science databases were used for review. Over 200 literature sources on the given subject were analyzed, of which 67 were included in this review.
RESULTS: in the review, the data on molecular genetic changes occurring during peritoneal carcinomatosis and liver metastases in patients with colorectal cancer were presented. The key points for treatment patients with metastatic colorectal cancer were identified.
CONCLUSION: the presented data summarizes molecular genetic studies, which in turn enable clinical oncologists, surgeons and chemotherapists to determine treatment modality.
About the Authors
V. P. ShubinRussian Federation
Salyama Adilya str., 2, Moscow, 123423, Russia
+7(916)3445479
S. I. Achkasov
Russian Federation
Salyama Adilya str., 2, Moscow, 123423, Russia
O. I. Sushkov
Russian Federation
Salyama Adilya str., 2, Moscow, 123423, Russia
A. S. Tsukanov
Russian Federation
Salyama Adilya str., 2, Moscow, 123423, Russia
References
1. Hugen N., Van de Velde C.J.H., De Wilt J.H.W. et al. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014;25(3):651–657. DOI:10.1093/annonc/mdt591
2. Sushkov OI, Achkasov SI. Peritoneal colorectal carcinomatosis. Approaches to treatment (Review). Koloproctologia. 2016; no.4(58), pp.69-79. (in Russ.).
3. Stepanov I.V., Paderov Yu.М., Afanasyev S.G. Peritoneal carcinomatosis. Siberian journal of oncology. 2014; no.5,pp.45-53. (in Russ.).
4. Sampson J.A. Implantation Peritoneal Carcinomatosis of Ovarian Origin. Am J Pathol.1931;5(7):423-444.
5. Pretzsch E., Bösch F., Neumann J. et al. Mechanisms of Metastasis in Colorectal Cancer and Metastatic Organotropism: Hematogenous versus Peritoneal Spread. J Oncol. 2019;20191–13. DOI:10.1155/2019/7407190
6. Comings D.E. A general theory of carcinogenesis. Proc Natl Acad Sci U S A. 1973;70(12 (I)):3324–3328. DOI:10.1073/pnas.70.12.3324
7. Churkova ML, Kostyukevich SV. The epithelium mucosal of colon in normal and in functional and inflammatory bowel diseases. Experimental and Clinical Gastroenterology. 2018; no.5,pp.128-132. (in Russ.)
8. Munro M.J., Wickremesekera S.K., Peng L. et al. Cancer stem cells in colorectal cancer: A review. J Clin Pathol. 2018;71(2):110–116. DOI:10.1136/jclinpath-2017-204739
9. Odoux C., Fohrer H., Hoppo T. et al. A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 2008;68(17):6932–6941. DOI:10.1158/0008-5472.CAN-07-5779
10. Luo C., Cen S., Ding G. et al. Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options. Cancer Commun. 2019;39(1):13. DOI:10.1186/s40880-019-0361-0
11. Nozoe T., Anai H., Nasu S. et al. Clinicopathological characteristics of mucinous carcinoma of the colon and rectum. J Surg Oncol. 2000;75(2):103–107. DOI:10.1002/1096-9098(200010)75:2<103::AID-JSO6>3.0.CO;2-C
12. Spit M., Koo B.K., Maurice M.M. Tales from the crypt: Intestinal niche signals in tissue renewal, plasticity and cancer. Open Biol. 2018;8(9):180120. DOI:10.1098/rsob.180120
13. Schepers A.G., Snippert H.J., Stange D.E. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337(6095):730–735. DOI:10.1126/science.1224676
14. Herrstedt J. ESMO recommendations for prophylaxis of chemotherapy-induced nausea and vomiting (NV). Ann Oncol. 2001;12(8):1059–1060. DOI:10.1023/A:1017413507554
15. Antoniou A., Hébrant A., Dom G. et al. Cancer stem cells, a fuzzy evolving concept: A cell population or a cell property? Cell Cycle. 2013;12(24):3743–3748. DOI:10.4161/cc.27305
16. He S., Zhou H., Zhu X. et al. Expression of Lgr5, a marker of intestinal stem cells, in colorectal cancer and its clinicopathological significance. Biomed Pharmacother. 2014;68(5):507–513. DOI:10.1016/j.biopha.2014.03.016
17. Takahashi H., Ishii H., Nishida N. et al. Significance of Lgr5+ve cancer stem cells in the colon and rectum. Ann Surg Oncol. 2011;18(4):1166–1174. DOI:10.1245/s10434-010-1373-9
18. Patriarca C., Macchi R.M., Marschner A.K. et al. Epithelial cell adhesion molecule expression (CD326) in cancer: A short review. Cancer Treat Rev. 2012;38(1):68–75. DOI:10.1016/j.ctrv.2011.04.002
19. Okano M., Konno M., Kano Y. et al. Human colorectal CD24+ cancer stem cells are susceptible to epithelial-mesenchymal transition. Int J Oncol. 2014;45(2):575–580. DOI:10.3892/ijo.2014.2462
20. Thapa R., Wilson G.D. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int. 2016;20161–15. DOI:10.1155/2016/2087204
21. Huang R., Mo D., Wu J. et al. CD133 expression correlates with clinicopathologic features and poor prognosis of colorectal cancer patients: An updated meta-analysis of 37 studies. Med (United States). 2018;97(23):e10446. DOI:10.1097/MD.0000000000010446
22. Kemper K., Versloot M., Cameron K. et al. Mutations in the Ras-Raf axis underlie the prognostic value of CD133 in colorectal cancer. Clin Cancer Res. 2012;18(11):3132–3141. DOI:10.1158/1078-0432.CCR-11-3066
23. Weichert W., Knösel T., Bellach J. et al. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol. 2004;57(11):1160–1164. DOI:10.1136/jcp.2004.016238
24. Smith N.R., Davies P.S., Levin T.G. et al. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell Homeostasis. Cmgh. 2017;3(3):389–409. DOI:10.1016/j.jcmgh.2016.12.010
25. Liu Y., Yang Y., Xu H. et al. Implication of usp22 in the regulation of BMI-1, c-Myc, p16INK4a, p14ARF, and cyclin D2 expression in primary colorectal carcinomas. Diagnostic Mol Pathol. 2010;19(4):194–200. DOI:10.1097/PDM.0b013e3181e202f2
26. Tamura S., Isobe T., Ariyama H. et al. E-cadherin regulates proliferation of colorectal cancer stem cells through NANOG. Oncol Rep. 2018;40(2):693–703. DOI:10.3892/or.2018.6464
27. O’Brien C.A., Pollett A., Gallinger S. et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–110. DOI:10.1038/nature05372
28. Zhou Y., Xia L., Wang H. et al. Cancer stem cells in progression of colorectal cancer. Oncotarget. 2018;9(70):33403–33415. DOI:10.18632/oncotarget.23607
29. Dallas N.A., Xia L., Fan F. et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009; 69(5):1951–1957. DOI:10.1158/0008-5472.CAN-08-2023
30. Neumann J., Löhrs L., Albertsmeier M. et al. Cancer Stem Cell Markers Are Associated with Distant Hematogenous Liver Metastases but Not with Peritoneal Carcinomatosis in Colorectal Cancer. Cancer Invest. 2015;33(8):354–360. DOI:10.3109/07357907.2015.1047507
31. De Sousa E Melo F., Kurtova A. V., Harnoss J.M. et al. A distinct role for Lgr5 + stem cells in primary and metastatic colon cancer. Nature. 2017;543(7647):676–680. DOI:10.1038/nature21713
32. Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. DOI:10.1038/nrm3758
33. Gonzalez D.M., Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8. DOI:10.1126/scisignal.2005189
34. Shubin V.P., Shelygin Yu.A., Shushkov O.I. et al. The role of the epithelially-mesenchimal transition in the development of colorectal cancer (Review). Koloproctologia. 2018;no.2(64),pp.111-117.(in Russ.).
35. Sugarbaker P.H. Peritoneal carcinomatosis: natural history and rational therapeutic interventions using intraperitoneal chemotherapy. In: Cancer treatment and research. Springer {US}, pp 149–168
36. Kaigorodova E. V. Circulating tumor cells: Clinical significance in breast cancer (review). Vestn Ross Akad Meditsinskikh Nauk. 2017;72(6):450–457. DOI:10.15690/vramn833
37. Placke T., Örgel M., Schaller M. et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–448. DOI:10.1158/0008-5472.CAN-11-1872
38. Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging Biological Principles of Metastasis. Cell. 2017;168(4):670–691. DOI:10.1016/j.cell.2016.11.037
39. Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–134. DOI:10.1038/nrc3004
40. McDonald B., McAvoy E.F., Lam F. et al. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med. 2008;205(4):915–927. DOI:10.1084/jem.20071765
41. Senbanjo L.T., Chellaiah M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol. 2017;5(MAR): DOI:10.3389/fcell.2017.00018
42. Nicolazzo C., Raimondi C., Gradilone A. et al. Circulating tumor cells in right-and left-sided colorectal cancer. Cancers (Basel). 2019;11(8):1042. DOI:10.3390/cancers11081042
43. Kallergi G., Konstantinidis G., Markomanolaki H. et al. Apoptotic circulating tumor cells in early and metastatic breast cancer patients. Mol Cancer Ther. 2013;12(9):1886–1895. DOI:10.1158/1535-7163.MCT-12-1167
44. Frisch S.M., Screaton R.A. Anoikis mechanisms. Curr Opin Cell Biol. 2001; 13(5):555–562. DOI:10.1016/S0955-0674(00)00251-9
45. Paoli P., Giannoni E., Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta - Mol Cell Res. 2013;1833(12):3481–3498. DOI:10.1016/j.bbamcr.2013.06.026
46. Bergin E., Levine J.S., Koh J.S. et al. Mouse proximal tubular cell-cell adhesion inhibits apoptosis by a cadherin-dependent mechanism. Am J Physiol - Ren Physiol. 2000;278(5 47-5):F758--F768. DOI:10.1152/ajprenal.2000.278.5.f758
47. Orford K., Orford C.C., Byers S.W. Exogenous expression of β-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest. J Cell Biol. 1999;146(4):855–867. DOI:10.1083/jcb.146.4.855
48. Pei D., Shu X., Gassama-Diagne A. et al. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol. 2019;21(1):44–53. DOI:10.1038/s41556-018-0195-z
49. Takeda A., Stoeltzing O., Ahmad S.A. et al. Role of angiogenesis in the development and growth of liver metastasis. Ann Surg Oncol. 2002;9(7):610–616. DOI:10.1007/bf02574475
50. Tischer E, Mitchell R, Hartman T et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266(18):11947-11954.
51. Shahid S., Iman A., Matti U. et al. Fibrin Deposit on the Peritoneal Surface Serves as a Niche for Cancer Expansion in Carcinomatosis Patients. Neoplasia (United States). 2019; 21(11):1091–1101. DOI:10.1016/j.neo.2019.08.006
52. Shubin V.P., Ponomarenko A.A., Tsukanov A.S. et al. Heterogeneity in Colorectal Primary Tumor and Synchronous Liver Metastases. Russ J Genet. 2018; 54(6):698–702. DOI:10.1134/S1022795418060091
53. Van Der Jeught K., Xu H.C., Li Y.J. et al. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24(34):3834–3848. DOI:10.3748/wjg.v24.i34.3834
54. Pikoulis E., Margonis G.A., Andreatos N. et al. Prognostic role of braf mutations in colorectal cancer liver metastases. Anticancer Res. 2016;36(9):4805–4811. DOI:10.21873/anticanres.11040
55. Schirripa M., Biason P., Lonardi S. et al. Class 1, 2, and 3 BRAF-mutated metastatic colorectal cancer: A detailed clinical, pathologic, and molecular characterization. Clin Cancer Res. 2019;25(13):3954–3961. DOI:10.1158/1078-0432.CCR-19-0311
56. Fujiyoshi K., Yamamoto G., Takenoya T. et al. Metastatic Pattern of Stage IV Colorectal Cancer with High-Frequency Microsatellite Instability as a Prognostic Factor. Anticancer Res. 2017;37(1):239–247. DOI:10.21873/anticanres.11313
57. Marcuello M., Vymetalkova V., Neves R.P.L. et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med. 2019; 69107–122. DOI:10.1016/j.mam.2019.06.002
58. Ding Y., Li W., Wang K. et al. Perspectives of the Application of Liquid Biopsy in Colorectal Cancer. Biomed Res Int. 2020;2020. DOI:10.1155/2020/6843180
59. Bidard F.-C., Kiavue N., Ychou M. et al. Circulating Tumor Cells and Circulating Tumor DNA Detection in Potentially Resectable Metastatic Colorectal Cancer: A Prospective Ancillary Study to the Unicancer Prodige-14 Trial. Cells. 2019;8(6):516. DOI:10.3390/cells8060516
60. Shubin V.P., Shelygin Yu.A., Achkasov S.I. et al. Investigation KRAS mutation in circulation tumor DNA in different stages of colorectal cancer. Voprosy onkologii. 2019;no.5(65), pp.701-707. (in Russ.).
61. Osumi H., Shinozaki E., Takeda Y. et al. Clinical relevance of circulating tumor DNA assessed through deep sequencing in patients with metastatic colorectal cancer. Cancer Med. 2019;8(1):408–417. DOI:10.1002/cam4.1913
62. Hardingham J.E., Kotasek D., Sage R.E. et al. Detection of circulating tumor cells in colorectal cancer by immunobead-PCR is a sensitive prognostic marker for relapse of disease. Mol Med. 1995;1(7):789–794. DOI:10.1007/bf03401893
63. Sadanandam A.A., Lyssiotis C.A., Homicsko K. et al. Colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;5(19):619-25. DOI: 10.1038/nm.3175
64. Blank A., Roberts D.E., Dawson H. et al. Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front Med. 2018;5(AUG): DOI:10.3389/fmed.2018.00234
65. Tsukanov A.S., Pospekhova N.I., Shubin V.P. et al. Clinical and genetic characteristics of russian patients with lynch syndrome. Molecular medicine. 2015;no.1,pp.24-28.(in Russ.).
66. Fedyanin M.Y., Strogonova A.M., Senderovich A.I. et al. Concordance of KRAS, NRAS, BRAF, PIK3CA mutation status between the primary tumor and metastases in patients with colorectal cancer. Malig tumours. 2017;v.2:6–13. (in Russ.)
67. Woods D., Turchi J.J. Chemotherapy induced DNA damage response Convergence of drugs and pathways. Cancer Biol Ther. 2013;14(5):379–389. DOI:10.4161/cbt.23761
Supplementary files
|
1. Рисунок 1. Модели канцерогенеза согласно Antoniou A. и соавт. с доработками [15]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(64KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Схема процессов гематогенного и имплантационного метастазирования. | |
Subject | ||
Type | Other | |
View
(49KB)
|
Indexing metadata ▾ |
![]() |
3. Таблица 1. Маркёры раковых стволовых клеток толстой кишки. | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
Review
For citations:
Shubin V.P., Achkasov S.I., Sushkov O.I., Tsukanov A.S. MOLECULAR-GENETIC FEATURES OF COLORECTAL TUMORS IN PERITONEAL CARCINOMATOSIS AND LIVER METASTASES (review). Koloproktologia. 2020;19(4):177-187. (In Russ.) https://doi.org/10.33878/2073-7556-2020-19-4-177-187