Diagnostics and monitoring of colorectal cancer with AuNP-APTASENSOR
https://doi.org/10.33878/10.33878/2073-7556-2025-24-4-92-105
Abstract
OBJECTIVE: to develop and validate a novel method for diagnosing colorectal cancer (CRC) by semi-quantitative analysis of specific populations of plasma small extracellular nanovesicles (SEVs) using AuNP-aptasensor technology.
MATERIALS AND METHODS: the study used plasma samples from patients with colorectal cancer (n = 37), patients with Crohn’s disease (n = 10), and healthy donors (n = 32). Investigation of standard SEVs characteristics was performed using nanoparticle tracking analysis (NTA) and flow cytometry; gold nanoparticle characteristics were analyzed using dynamic light scattering (DLS) and absorption spectroscopy. Semi-quantitative analysis of specific SEVs populations was performed using AuNP-aptasensor technology, employing a colorimetric method for result evaluation.
RESULTS: AuNP-aptasensors based on nine different DNA aptamers were developed and tested. An increase in the number of CRC-specific SEVs in the plasma of patients with CRC was shown compared to the plasma of donors and patients with Crohn’s disease. Optimized AuNP-aptasensor revealed following indicatirs of diagnostic significance: AUC — 0,95, specificity — 88,89%, sensitivity — 90,63%.In the group of patients with CRC, the correlation between tumor size and the results obtained using the AuNP-aptasensor was evaluated
CONCLUSION: assessing the quantity of CRC-specific plasma SEVs using AuNP-aptasensor technology is a promising method for diagnosing CRC.
Keywords
About the Authors
T V. SharonovaRussian Federation
Tatiana V. Sharonova
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
E. Ya. Kadantseva
Russian Federation
Ekaterina Ya. Kadantseva
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
K. E. Katsuba
Russian Federation
Konstantin E. Katsuba
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
I. M. Kovalenko
Russian Federation
Irina M. Kovalenko
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
M. I. Sluzhev
Russian Federation
Maksim I. Sluzhev
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
T. Yu. Semiglazova
Russian Federation
Tatiana Yu. Semiglazova
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
D. V. Burtcev
Russian Federation
Dmitriy V. Burtcev
Pushkinskaya st., 127, Rostov-on-Don, 344000; Nakhichevansky Lane, 29, Rostov-on-Don, 344022
T. A. Dimitriadi
Russian Federation
Tatiana A. Dimitriadi
Pushkinskaya st., 127, Rostov-on-Don, 344000; Nakhichevansky Lane, 29, Rostov-on-Don, 344022
K. E. Mazovka
Russian Federation
Karina E. Mazovka
Nakhichevansky Lane, 29, Rostov-on-Don, 344022
L. S. Mkrtchian
Russian Federation
Lilit S. Mkrtchian
Nakhichevansky Lane, 29, Rostov-on-Don, 344022
A. V. Vasilev
Russian Federation
Aleksandr V. Vasilev
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
I. A. Burovik
Russian Federation
чlia A. Burovik
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
A. V. Malek
Russian Federation
Anastasia V. Malek
Leningradskaya st., 68, village Pesochny, St. Petersburg, 197758
References
1. Merabishvili M.V. Survival of cancer patients. Saint Petersburg. 2011; I:Issue 2. (In Russ.).
2. Zhang Y, Wang Y, Zhang B, et al. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023;163:114786. doi: 10.1016/j.biopha.2023.114786
3. Hanna M, Dey N, Grady WM. Emerging Tests for Noninvasive Colorectal Cancer Screening. Clinical Gastroenterology and Hepatology. 2023;21(3):604–616. doi: 10.1016/j.cgh.2022.12.008
4. Mannucci A, Goel A. Stool and blood biomarkers for colorectal cancer management: an update on screening and disease monitoring. Molecular Cancer. 2024;23(1):259. doi: 10.1186/s12943-024-02174-w
5. Akhmaltdinova L.L., Avdienko O.V., Sirota V.B., et al. Biomarkers in the diagnosis of colorectal cancer. Medicine and Ecology. 2018. (In Russ.)
6. Kosareva P.V., Konev R.A., Sivakova L.V., et al. Tumor markers in diagnosis, prognosis and choice of treatment method of colorectal cancer. Modern Problems of Science and Education. 2022. (In Russ.).
7. Khanevich M.D., Khazov A.V., Khrykov G.N., et al. Risk factors and prevention of colorectal cancer. Preventive medicine. 2019;22(3):107 111. (In Russ.).
8. Kaprin A.D., Starinsky V.V., Shokhzadova A.O. Malignant neoplasms in Russia in 2023 (morbidity and mortality). Moscow, 2024. (In Russ.).
9. Gao Y, Qin Y, Wan C, et al. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Frontiers in Oncology. 2021.
10. Nazarova I, Slyusarenko M, Sidina E, et al. Evaluation of ColonSpecific Plasma Nanovesicles as New Markers of Colorectal Cancer. Cancers. 2021;13(15):3905. doi: 10.3390/cancers13153905
11. Nazarova I.V., Nikiforova N.S., Sidina E.I., et al. Colorectal Cancer Diagnostics Via Detection of Tissue-Specific Extracellular Nano-Vesicles. Koloproktologia. 2019;19(4):32–56. (In Russ.). doi: 10.33878/2073-7556-2020-19-4-32-56
12. Röthlisberger P, HollensteinM. Aptamer chemistry. Advanced Drug Delivery Reviews. 2018;134:3–21. doi: 10.1016/j.addr.2018.04.007
13. Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822. doi: 10.1038/346818a0
14. Li W-M, Bing T, Wei J-Y, et al. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials. 2014;35(25):6998–7007. doi: 10.1016/j.biomaterials.2014.04.112
15. Sefah K, Meng L, Lopez-Colon D, et al. DNA Aptamers as Molecular Probes for Colorectal Cancer Study. PLoS ONE. 2010;5(12):e14269. doi: 10.1371/journal.pone.0014269
16. Maimaitiyiming Y, Yang C, Wang Y, et al. Selection and characterization of novel DNA aptamer against colorectal carcinoma Caco‐2 cells. Biotechnology and Applied Biochemistry. 2019;66(3):412–418. doi: 10.1002/bab.1737
17. Zhu C, Li L, Wang Z, et al. Recent advances of aptasensors for exosomes detection. Biosensors and Bioelectronics. 2020;160:112213. doi: 10.1016/j.bios.2020.112213
18. Katsuba KE, Kramynin LA, Slyusarenko MA, et al. Diagnostic potential of CD30(+)- plasma nanovesicles in Hodgkin’s lymphoma. Oncohematology. 2023;18(4):145–155. (In Russ.). doi: 10.17650/1818-8346-2023-18-4-145-155
19. Slyusarenko M, Shalaev S, Valitova A, et al. AuNP Aptasensor for Hodgkin Lymphoma Monitoring. Biosensors. 2022. doi: 10.3390/bios12010023
20. Zabegina L, Zyatchin I, Kniazeva M, et al. Diagnosis of Prostate Cancer through the Multi-Ligand Binding of Prostate-Derived Extracellular Vesicles and miRNA Analysis. Life. 2023;13(4):1–15. doi: 10.3390/life13040885
21. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 1951;55(03):580–584. doi: 10.1039/df9511100055
22. Slyusarenko M, Nikiforova N, Sidina E, et al. Formation and evaluation of a two-phase polymer system in human plasma as a method for extracellular nanovesicle isolation. Polymers. 2021. doi: 10.3390/polym13030458
23. Willms E, Cabañas C, Mäger I, et al. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Frontiers in Immunology. 2018. doi: 10.3389/fimmu.2018.00738
24. Yahaya ML, Zakaria ND, Noordin R, et al. Synthesis of large and stable colloidal gold nanoparticles (AuNPs) by seeding-growth method. Materials Today: Proceedings. 2022;66:2943–2947. doi: 10.1016/j.matpr.2022.06.563
25. Shah J, Purohit R, Singh R, et al. ATP-enhanced peroxidaselike activity of gold nanoparticles. Journal of Colloid and Interface Science. 2015;456:100–107. doi: 10.1016/j.jcis.2015.06.015
26. Cha BS, Jang YJ, Lee ES, et al. Development of a Novel DNA Aptamer Targeting Colorectal Cancer Cell-Derived Small Extracellular Vesicles as a Potential Diagnostic and Therapeutic Agent. Advanced Healthcare Materials. 2023;12(27):1–14. doi: 10.1002/adhm.202300854
27. Li WM, Bing T, Wei JY, et al. Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials. 2014;35(25):6998–7007. doi: 10.1016/j.biomaterials.2014.04.112
28. Zheng Y, Zhao Y, Di Y, et al. DNA aptamers from whole-serum SELEX as new diagnostic agents against gastric cancer. RSC Advances. 2019. doi: 10.1039/C8RA08642G
29. Wu X, Zhao Z, Bai H, et al. DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for in vivo Imaging and Clinical Tissue Recognition. Theranostics. 2015;5(9):985–994. doi: 10.7150/thno.11938
30. Wu X, Liu H, Han D, et al. Elucidation and structural modeling of cd71 as a molecular target for cell-specific aptamer binding. Journal of the American Chemical Society. 2019;141(27):10760– 10769. doi: 10.1021/jacs.9b03720
31. Champanhac C, Teng IT, Cansiz S, et al. Development of a panel of DNA Aptamers with High Affinity for Pancreatic Ductal Adenocarcinoma. Scientific Reports. 2015;5:1–8. doi: 10.1038/ srep16788
32. Clawson GA, Abraham T, Pan W, et al. A Cholecystokinin B Receptor-Specific DNA Aptamer for Targeting Pancreatic Ductal Adenocarcinoma. Nucleic Acid Therapeutics. 2017;27(1):23–35. doi: 10.1089/nat.2016.0621
33. Li K, Qi L, Gao L, et al. Selection and preliminary application of a single stranded DNA aptamer targeting colorectal cancer serum. RSC Advances. 2019;9(66):38867–38876. doi: 10.1039/c9ra04777h
34. Li X, An Y, Jin J, et al. Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Analytical Chemistry. 2015;87(9):4941–4948. doi: 10.1021/acs.analchem.5b00637
35. Cao HY, Yuan AH, Chen W, et al. A DNA aptamer with high affinity and specificity for molecular recognition and targeting therapy of gastric cancer. BMC Cancer. 2014. doi: 10.1186/1471-2407-14-699
36. Huang X, Zhong J, Ren J, et al. A DNA aptamer recognizing MMP14 for in vivo and in vitro imaging identified by cell-SELEX. Oncology Letters. 2019;18(1):265–274. doi: 10.3892/ol.2019.10282
37. Matsumura T, Sugimachi K, Iinuma H, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. British journal of cancer. 2015;113(2):275–281. doi: 10.1038/bjc.2015.201
38. Ogata-Kawata H, Izumiya M, Kurioka D, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PloS one. 2014;9(4):e92921. doi: 10.1371/journal.pone.0092921
39. Wei P, Wu F, Kang B, et al. Plasma extracellular vesicles detected by Single Molecule array technology as a liquid biopsy for colorectal cancer. Journal of Extracellular Vesicles. 2020. doi: 10.1080/20013078.2020.1809765
40. Park J, Park JS, Huang C-H, et al. An integrated magnetoelectrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nature biomedical engineering. 2021;5(7):678–689. doi: 10.1038/s41551-021-00752-7
41. A Study ofImaging, Blood, and Tissue Samples to Guide Treatment of Colon Cancer and Related Liver Tumors. DOI: NCT03432806
42. Identification of New Diagnostic Protein Markers for Colorectal Cancer (EXOSCOL01). DOI: NCT04394572
43. Contents of Circulating Extracellular Vesicles: Biomarkers in Colorectal Cancer Patients (ExoColon). DOI: NCT04523389с
Supplementary files
Review
For citations:
Sharonova T.V., Kadantseva E.Ya., Katsuba K.E., Kovalenko I.M., Sluzhev M.I., Semiglazova T.Yu., Burtcev D.V., Dimitriadi T.A., Mazovka K.E., Mkrtchian L.S., Vasilev A.V., Burovik I.A., Malek A.V. Diagnostics and monitoring of colorectal cancer with AuNP-APTASENSOR. Koloproktologia. 2025;24(4):92-105. (In Russ.) https://doi.org/10.33878/10.33878/2073-7556-2025-24-4-92-105






























