Colorectal cancer associated with parathyroid hormone-related protein (review)
https://doi.org/10.33878/2073-7556-2024-23-1-162-171
Abstract
Parathyroid hormone-related protein (PTHrP) is associated with various cancer types. This is the first review in the Russian, devoted to this topic, and it is aimed to contribute to the current knowledge about colorectal cancer, by means of summarizing all known information on the topic and identifying future directions for advanced research including on the role of parathyroid hormone-related protein in colorectal oncogenesis, signal channels that participate in mitogenic action of the protein on cancer cells, its effect on tumor angiogenesis. The review includes results of modern research involvement of PTHrP in the formation of chemoresistance of colorectal cancer cells, as well as its influence on the modulation of the epithelial-mesenchymal transition program and other events, associated with tumor invasion. The review presents information proving that PTHrP is related to colorectal cancer cells becoming of an aggressive phenotype; the work also describes molecular mechanisms involved in these processes. There is a growing interest to use this rather unique protein in therapies, which determines active development of pharmaceutical substances based on analogues of this protein. The final goal is to advance the development of effective therapeutic strategies, which could improve the treatment results of colorectal cancer in patients.
About the Authors
A. N. KurzanovRussian Federation
Sedina st., 4, Krasnodar, 350063
V. M. Durleshter
Russian Federation
Sedina st., 4, Krasnodar, 350063
Krasnih Partisan st., 6/2, Krasnodar, 3500121
M. I. Bykov
Russian Federation
Sedina st., 4, Krasnodar, 350063
1st May st., 167, bld. 1, Krasnodar, 350086
References
1. Sung H, Ferlay J, Siegel RL et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209-249. doi: 10.3322/caac.21660.
2. Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol. 2022a; 28(26):3027-3046. doi: 10.3748/wjg.v28.i26.3027.
3. Sagaert X, Vanstapel A, Verbeek S. Tumor Heterogeneity in Colorectal Cancer: What Do We Know So Far? Pathobiology. 2018; 85(1-2):72-84. doi: 10.1159/000486721.
4. Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal Cells in Colon Cancer. Gastroenterology. 2017; 152(5):964-979. doi: 10.1053/j.gastro.2016.11.049.
5. Sandberg TP, Stuart MPME, Oosting J et al. Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer. BMC Cancer. 2019; 19(1):284. doi: 10.1186/s12885-019-5462-2.
6. Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan NARNM. Tumour-Associated Macrophages (TAMs) in Colon Cancer and How to Reeducate Them. J Immunol Res. 2019; 2019:2368249. doi: 10.1155/2019/2368249.
7. Unterleuthner D, Neuhold P, Schwarz K et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis. 2020; 23(2):159-177. doi: 10.1007/s10456-019-09688-8.
8. Qian Y, Wu X, Yokoyama Y et al. E-cadherin-Fc chimera protein matrix enhances cancer stem-like properties and induces mesenchymal features in colon cancer cells. Cancer Sci. 2019; 110(11):3520-3532. doi: 10.1111/cas.14193.
9. Ning X, Wang C, Zhang M, et al. Ectopic Expression of miR-147 Inhibits Stem Cell Marker and Epithelial-Mesenchymal Transition (EMT)-Related Protein Expression in Colon Cancer Cells. Oncol Res. 2019; 27(4):399-406. doi: 10.3727/096504018X15179675206495.
10. Hatano Y, Fukuda S, Hisamatsu K et al. Multifaceted Interpretation of Colon Cancer Stem Cells. Int J Mol Sci. 2017; 18(7):1446. doi: 10.3390/ijms18071446.
11. Cheruku H. R., Mohamedali A., Cantor D. I. et al. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EuPA Open Proteomics. 2015; 8: 104-115. https://doi.org/10.1016/j.euprot.2015.06.004.
12. Pandurangan AK. Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev. 2013; 14(4):2201-5. doi: 10.7314/apjcp.2013.14.4.2201.
13. Khaleghpour K, Li Y, Banville D et al. Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis. 2004; 25(2):241-8. doi: 10.1093/carcin/bgg195.
14. Chen J, Elfiky A, Han M et al. The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer. 2014; 13(1):5-13. doi: 10.1016/j.clcc.2013.10.003.
15. Iresjö BM, Kir S, Lundholm K. Parathyroid hormone related protein (PTHrP) in patients with pancreatic carcinoma and overt signs of disease progression and host tissue wasting. Transl Oncol. 2023; 36:101752. doi: 10.1016/j.tranon.2023.101752.
16. Iino C, Shimoyama T, Akemoto Y et al. Humoral hypercalcemia due to gastric carcinoma secreting parathyroid hormone-related protein during chemotherapy: a case report. Clin J Gastroenterol. 2016; 9(2):68-72. doi: 10.1007/s12328-016-0636-9.
17. Deans C, Wigmore S, Paterson-Brown S et al. Serum parathyroid hormone-related peptide is associated with systemic inflammation and adverse prognosis in gastroesophageal carcinoma. Cancer. 2005; 103(9):1810-8. doi: 10.1002/cncr.20972.
18. Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 2010; 8:23. doi: 10.1186/1478-811X-8-23.
19. Xu C, Wang Z, Cui R et al. Co-expression of parathyroid hormone related protein and TGF-beta in breast cancer predicts poor survival outcome. BMC Cancer. 2015; 15:925. doi: 10.1186/s12885-015-1873-x.
20. Wu CE, Wang CW, Huang WK et al. Cytoplasmic and nuclear parathyroid hormone-related proteins are opposing prognostic factors in patients with non-small-cell lung cancer who have undergone curative resection. Jpn J Clin Oncol. 2015; 45(3):267-73. doi: 10.1093/jjco/hyu202.
21. Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel). 2023; 15(7):1982. doi: 10.3390/cancers15071982.
22. Burtis WJ, Wu T, Bunch C et al. Identification of a novel 17,000-dalton parathyroid hormone-like adenylate cyclase-stimulating protein from a tumor associated with humoral hypercalcemia of malignancy. J Biol Chem. 1987; 262(15):7151-6.
23. Moseley JM, Kubota M, Diefenbach-Jagger H et al. Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci U S A. 1987; 84(14):5048-52. doi: 10.1073/pnas.84.14.5048.
24. Strewler GJ, Stern PH, Jacobs JW et al. Parathyroid hormonelike protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J Clin Invest. 1987; 80(6):1803-7. doi: 10.1172/JCI113275.
25. Soki FN, Park SI, McCauley LK. The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol. 2012; 8(7):803-17. doi: 10.2217/fon.12.76.
26. McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res. 2012; 27(6):1231-9. doi: 10.1002/jbmr.1617.
27. Luparello C. Parathyroid Hormone-Related Protein (PTHrP): A Key Regulator of Life/Death Decisions by Tumor Cells with Potential Clinical Applications. Cancers (Basel). 2011;3(1):396-407. doi: 10.3390/cancers3010396.
28. Naafs MAB. Parathyroid hormone related peptide (PTHrP): a mini-review. Endocrinol Metab Int J. 2017; 5(6):321-328. DOI: 10.15406/emij.2017.05.00139.
29. Zhao LH, Ma S, Sutkeviciute I et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science. 2019; 364(6436):148-153. doi: 10.1126/science.aav7942.
30. Malakouti S, Asadi FK, Kukreja SC et al. Parathyroid hormone-related protein expression in the human colon: immunohistochemical evaluation. Am Surg. 1996; 62(7):540-4; discussion 544-5.
31. Nishihara M, Ito M, Tomioka T et al. Clinicopathological implications of parathyroid hormone-related protein in human colorectal tumours. J Pathol. 1999; 187(2):217-22. doi: 10.1002/(SICI)1096-9896(199901)187:2<217:AID-PATH210>3.0.CO;2-0.
32. Watson PH, Fraher LJ, Hendy GN et al. Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues. J Bone Miner Res. 2000; 15(6):1033-44. doi: 10.1359/jbmr.2000.15.6.1033.
33. Gagiannis S, Müller M, Uhlemann S et al. Parathyroid hormone-related protein confers chemoresistance by blocking apoptosis signaling via death receptors and mitochondria. Int J Cancer. 2009; 125(7):1551-7. doi: 10.1002/ijc.24471.
34. Bhatia V, Saini MK, Falzon M. Nuclear PTHrP targeting regulates PTHrP secretion and enhances LoVo cell growth and survival. Regul Pept. 2009; 158(1-3):149-55. doi: 10.1016/j.regpep.2009.07.008.
35. Ahmed D, Eide PW, Eilertsen IA et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013; 2(9):e71. doi: 10.1038/oncsis.2013.35.
36. Shen X, Mula RV, Evers BM et al. Increased cell survival, migration, invasion, and Akt expression in PTHrP-overexpressing LoVo colon cancer cell lines. Regul Pept. 2007; 141(1-3):61-72. doi: 10.1016/j.regpep.2006.12.017.
37. Mula RV, Bhatia V, Falzon M. PTHrP promotes colon cancer cell migration and invasion in an integrin α6β4-dependent manner through activation of Rac1. Cancer Lett. 2010; 298(1):119-27. doi: 10.1016/j.canlet.2010.06.009.
38. Botchkina IL, Rowehl RA, Rivadeneira DE et al. Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genomics Proteomics. 2009; 6(1):19-29.
39. Calvo N, Martín MJ, de Boland AR, Gentili C. Involvement of ERK1/2, p38 MAPK, and PI3K/Akt signaling pathways in the regulation of cell cycle progression by PTHrP in colon adenocarcinoma cells. Biochem Cell Biol. 2014; 92(4):305-15. doi: 10.1139/bcb-2013-0106.
40. Lezcano V, Gentili C, de Boland AR. Role of PTHrP in human intestinal Caco-2 cell response to oxidative stress. Biochim Biophys Acta. 2013 Dec;1833(12):2834-2843. doi: 10.1016/j.bbamcr.2013.06.029.
41. Martín MJ, Calvo N, de Boland AR et al. Molecular mechanisms associated with PTHrP-induced proliferation of colon cancer cells. J Cell Biochem. 2014; 115(12):2133-45. doi: 10.1002/jcb.24890.
42. Calvo N, Carriere P, Martin MJ, Gentili C. RSK activation via ERK modulates human colon cancer cells response to PTHrP. J Mol Endocrinol. 2017; 59(1):13-27. doi: 10.1530/JME-16-0216.
43. Martín MJ, Gigola G, Zwenger A et al. Potential therapeutic targets for growth arrest of colorectal cancer cells exposed to PTHrP. Mol Cell Endocrinol. 2018; 478:32-44. doi: 10.1016/j.mce.2018.07.005.
44. Novoa Díaz MB, Carriere PM, Martín MJ et al. Involvement of parathyroid hormone-related peptide in the aggressive phenotype of colorectal cancer cells. World J Gastroenterol 2021; 27(41): 7025-7040. DOI: 10.3748/wjg.v27.i41.7025.
45. Kong DH, Kim MR, Jang JH et al. A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. Int J Mol Sci. 2017; 18(8):1786. doi: 10.3390/ijms18081786.
46. Battaglin F, Puccini A, Intini R,et al. The role of tumor angiogenesis as a therapeutic target in colorectal cancer. Expert Rev Anticancer Ther. 2018; 18(3):251-266. doi: 10.1080/14737140.2018.1428092.
47. Calvo N, Carriere P, Martín MJ et al. PTHrP treatment of colon cancer cells promotes tumor associated-angiogenesis by the effect of VEGF. Mol Cell Endocrinol. 2019; 483:50-63. doi: 10.1016/j.mce.2019.01.005.
48. Tsoumas D, Nikou S, Giannopoulou E et al. ILK Expression in Colorectal Cancer Is Associated with EMT, Cancer Stem Cell Markers and Chemoresistance. Cancer Genomics Proteomics. 2018; 15(2):127-141. doi: 10.21873/cgp.20071.
49. Parsons S, Maldonado EB, Prasad V. Comparison of Drugs Used for Adjuvant and Metastatic Therapy of Colon, Breast, and Non-Small Cell Lung Cancers. JAMA Netw Open. 2020; 3(4):e202488. doi: 10.1001/jamanetworkopen.2020.2488.
50. Guglielmi AP, Sobrero AF. Second-line therapy for advanced colorectal cancer. Gastrointest Cancer Res. 2007; 1(2):57-63.
51. Mocellin S, Baretta Z, Roqué I et al. Second-line systemic therapy for metastatic colorectal cancer. Cochrane Database Syst Rev. 2017; 1(1):CD006875. doi: 10.1002/14651858.CD006875.pub3.
52. Cui Y, Sun Y, Hu S et al. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals. Oncogene. 2016;35(47):6065-6076. doi: 10.1038/onc.2016.135.
53. Paillas S, Boissière F, Bibeau F et al. Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma. Cancer Res. 2011; 71(3):1041-9. doi: 10.1158/0008-5472.CAN-10-2726.
54. Chen Y, Deng G, Fu Y et al. FOXC2 Promotes Oxaliplatin Resistance by Inducing Epithelial-Mesenchymal Transition via MAPK/ERK Signaling in Colorectal Cancer. Onco Targets Ther. 2020; 13:1625-1635. doi: 10.2147/OTT.S241367.
55. Naba NM, Tolay N, Erman B et al. Doxorubicin inhibits miR-140 expression and upregulates PD-L1 expression in HCT116 cells, opposite to its effects on MDA-MB-231 cells. Turk J Biol. 2020; 44(1):15-23. doi: 10.3906/biy-1909-12.
56. Zhou X, Xiao D. Long non-coding RNA GAS5 is critical for maintaining stemness and induces chemoresistance in cancer stem-like cells derived from HCT116. Oncol Lett. 2020; 19(5):3431-3438. doi: 10.3892/ol.2020.11471.
57. Novoa Díaz MB, Carriere P, Gigola G et al. Involvement of Met receptor pathway in aggressive behavior of colorectal cancer cells induced by parathyroid hormone-related peptide. World J Gastroenterol. 2022b; 28(26):3177-3200. doi: 10.3748/wjg.v28.i26.3177.
58. Choi YJ, Kim JH, Rho JK et al. AXL and MET receptor tyrosine kinases are essential for lung cancer metastasis. Oncol Rep. 2017; 37(4):2201-2208. doi: 10.3892/or.2017.5482.
59. Mezquita B, Pineda E, Mezquita J et al. LoVo colon cancer cells resistant to oxaliplatin overexpress c-MET and VEGFR-1 and respond to VEGF with dephosphorylation of c-MET. Mol Carcinog. 2016; 55(5):411-9. doi: 10.1002/mc.22289.
60. Wang S, Qiu J, Liu L et al. CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. J Exp Clin Cancer Res. 2020; 39(1):168. doi: 10.1186/s13046-020-01673-0.
61. Ma DJ, Cao Z, Wang BS, Sun YL. [Effect of silencing hepatocyte growth factor receptor c-Met expression on biological characteristics of colon cancer cells]. Zhonghua Zhong Liu Za Zhi. 2020; 42(5):362-368. Chinese. doi: 10.3760/cma.j.cn112152-112152-20191106-00714.
62. Cai P, Xie Y, Dong M, Zhu Q. Inhibition of MEIS3 Generates Cetuximab Resistance through c-Met and Akt. Biomed Res Int. 2020; 2020:2046248. doi: 10.1155/2020/2046248.
63. Shali H, Ahmadi M, Kafil HS, Dorosti A, Yousefi M. IGF1R and c-met as therapeutic targets for colorectal cancer. Biomed Pharmacother. 2016; 82:528-36. doi: 10.1016/j.biopha.2016.05.034.
64. Lee SJ, Lee J, Park SH, Park JO, Lim HY, Kang WK, Park YS, Kim ST. c-MET Overexpression in Colorectal Cancer: A Poor Prognostic Factor for Survival. Clin Colorectal Cancer. 2018 Sep;17(3):165-169. doi: 10.1016/j.clcc.2018.02.013.
65. Gao W, Bing X, Li M et al. Study of critical role of c-Met and its inhibitor SU11274 in colorectal carcinoma. Med Oncol. 2013; 30(2):546. doi: 10.1007/s12032-013-0546-3.
66.
67.
68. Brabletz T, Jung A, Dag S et al. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol. 1999; 155(4):1033-8. doi: 10.1016/s0002-9440(10)65204-2.
69. Chou YS, Yang MH. Epithelial-mesenchymal transition-related factors in solid tumor and hematological malignancy. J Chin Med Assoc. 2015; 78(8):438-45. doi: 10.1016/j.jcma.2015.05.002.
70. Carriere P, Calvo N, Novoa Díaz MB et al. Role of SPARC in the epithelial-mesenchymal transition induced by PTHrP in human colon cancer cells. Mol Cell Endocrinol. 2021; 530:111253. doi: 10.1016/j.mce.2021.111253.
Review
For citations:
Kurzanov A.N., Durleshter V.M., Bykov M.I. Colorectal cancer associated with parathyroid hormone-related protein (review). Koloproktologia. 2024;23(1):162-171. https://doi.org/10.33878/2073-7556-2024-23-1-162-171