AI-based algorithm for clinical decision support system in colonoscopy
https://doi.org/10.33878/2073-7556-2023-22-2-92-102
Abstract
AIM: to estimate the implementation of the original method that uses artificial intelligence (AI) to detect colorectal neoplasms.
MATERIALS AND METHODS: we selected 1070 colonoscopy videos from our archive with 5 types of lesions: hyperplastic polyp, serrated adenoma, adenoma with low-grade dysplasia, adenoma with high-grade dysplasia and invasive cancer. Then 9838 informative frames were selected, including 6543 with neoplasms. Lesions were annotated to obtain data set that was finally used for training a convolution al neural network (YOLOv5).
RESULTS: the trained algorithm is able to detect neoplasms with an accuracy of 83.2% and a sensitivity of 77.2% on a test sample of the dataset. The most common algorithm errors were revealed and analyzed.
CONCLUSION: the obtained data set provided an AI-based algorithm that can detect colorectal neoplasms in the video stream of a colonoscopy recording. Further development of the technology probably will provide creation of a clinical decision support system in colonoscopy.
About the Authors
D. A. MtvralashviliRussian Federation
Salyama Adilya st., 2, Moscow, 123423, Russia
D. G. Shakhmatov
Russian Federation
Salyama Adilya st., 2, Moscow, 123423, Russia
Barrikadnaya st., 2/1, Moscow, 125993, Russia
A. A. Likutov
Russian Federation
Salyama Adilya st., 2, Moscow, 123423, Russia
Barrikadnaya st., 2/1, Moscow, 125993, Russia
A. G. Zapolsky
Russian Federation
82 Vernadsky Ave., Moscow, 119571, Russia
D. I. Suslova
Russian Federation
Usacheva st., 33 p. 2, Moscow, 119048, Russia
A. A. Borodinov
Russian Federation
Kamennoostrovsky Ave., 11, Saint Petersburg, 197046, Russia
O. I. Sushkov
Russian Federation
Salyama Adilya st., 2, Moscow, 123423, Russia
S. I. Achkasov
Russian Federation
Salyama Adilya st., 2, Moscow, 123423, Russia
Barrikadnaya st., 2/1, Moscow, 125993, Russia
References
1. Kaprin A.D., Starinsky V.V., Shakhzadova A.O. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen Moscow State Medical Research Institute − Branch of the Federal State Budgetary Institution «NMIC of Radiology» of the Ministry of Health of Russia. 2022; 252 p. (in Russ.).
2. Winawer SJ, Zauber AG. Incidence reduction following colonoscopic polypectomy. Am J Gastroenterol. 2011;106:370. PMID: 21301465. doi: 10.1038/ajg.2010.387
3. Tribonias G, Theodoropoulou A, Konstantinidis K, et al. Comparison of standard vs high-definition, wide-angle colonoscopy for polyp detection: a randomized controlled trial. Colorectal Dis. 2010;12:e260–e266.
4. Hassan C, Piovani D, Spadaccini M, et al. Variability in adenoma detection rate in control groups of randomized colonoscopy trials: a systematic review and meta-analysis. Gastrointest Endosc. 2023;97(2):212–225.e7. doi: 10.1016/j.gie.2022.10.009
5. van Rijn JC, Reitsma JB, Stoker J, et al. Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol. 2006 Feb;101(2):343–50. PMID: 16454841. doi: 10.1111/j.1572-0241.2006.00390.x
6. Kashiwagi K, Inoue N, Yoshida T, et al. Polyp detection rate in transverse and sigmoid colon significantly increases with longer withdrawal time during screening colonoscopy. PLoS One. 2017 Mar 22;12(3):e0174155. PMID: 28328936; PMCID: PMC5362195. doi: 10.1371/journal.pone.0174155
7. Sui Y, Wang Q, Chen HH, et al. Comparison of adenoma detection in different colorectal segments between deep-sedated and unsedated colonoscopy. Sci Rep. 2022 Sep 12;12(1):15356. PMID: 36097050; PMCID: PMC9468171. doi: 10.1038/s41598-022-19468-y
8. Wang Y, He X, Nie H, et al. Application of artificial intelligence to the diagnosis and therapy of colorectal cancer. Am J Cancer Res. 2020;10(11):3575–98
9. Perone CS, Cohen-Adad J. Promises and limitations of deep learning for medical image segmentation. J Med Artif Intel. 2019;2.
10. Lui TKL, Leung WK. Is artificial intelligence the final answer to missed polyps in colonoscopy? World J Gastroenterol. 2020 Sep 21;26(35):5248–5255. PMID: 32994685; PMCID: PMC7504252. doi: 10.3748/wjg.v26.i35.5248
11. Luo Y, Zhang Y, Liu M, et al. Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: a Prospective, Randomized Cohort Study. J Gastrointest Surg. 2021 Aug;25(8):2011–2018. Epub 2020 Sep 23. PMID: 32968933; PMCID: PMC8321985. doi: 10.1007/s11605-020-04802-4
12. Wallace MB, Sharma P, Bhandari P, et al. Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology. 2022 Jul;163(1):295–304.e5. Epub 2022 Mar 15. PMID: 35304117. doi: 10.1053/j.gastro.2022.03.007
13. Xu H, Tang RSY, Lam TYT, et al. Artificial Intelligence-Assisted Colonoscopy for Colorectal Cancer Screening: A Multicenter Randomized Controlled Trial. Clin Gastroenterol Hepatol. 2023 Feb;21(2):337–346.e3. Epub 2022 Jul 19. PMID: 35863686. doi: 10.1016/j.cgh.2022.07.006
14. Areia M, Mori Y, Correale L, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit Health. 2022 Jun;4(6):e436–e444. Epub 2022 Apr 13. PMID: 35430151. doi: 10.1016/S2589-7500(22)00042-5
15. Zavyalov D.V., Kashin N.V., Nesterov P.V., et al. Algorithm of clarifying diagnostics and intraluminal endoscopic removal of epithelial neoplasms of the colon. Koloproktologia. 2021;20(1):17–22. (in Russ.). doi: 10.33878/2073-7556-2021-20-1-17-22
16. Bakulin I.G., Rasmagina I.A., Skalinskaya M.I., et al. The use of artificial intelligence for the analysis of endoscopic images in inflammatory bowel diseases. Therapy. 2022;7:7–17. (in Russ.). doi: 10.18565/therapy.2022.7.7-14
17. Wan J, Chen B, Yu Y. Polyp Detection from Colorectum Images by Using Attentive YOLOv5. Diagnostics (Basel). 2021 Dec 3;11(12):2264. PMID: 34943501; PMCID: PMC8700704. doi: 10.3390/diagnostics11122264
Review
For citations:
Mtvralashvili D.A., Shakhmatov D.G., Likutov A.A., Zapolsky A.G., Suslova D.I., Borodinov A.A., Sushkov O.I., Achkasov S.I. AI-based algorithm for clinical decision support system in colonoscopy. Koloproktologia. 2023;22(2):92-102. https://doi.org/10.33878/2073-7556-2023-22-2-92-102