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LEJIb: oyeHumb 3¢hchekmusHOCMb AN20PUMMOB UCKYCCMBEHHO20 UHMe I IeKma 015 NPO2HO3UPOBAHUS 0MOGIeHHbIX
pe3ynbmamos sedeHus 60/1bHbIX KosopekmansHeiM pakom (KPP) Ha ocHoBe KauHUYecKux OGHHBIX.
MATEPUAJIbI M METO/]bI: nposedeH cucmemamuyeckuli nouck Hay4Hbix nybaukayuli 3a 2015-2024 22. 8 6azax da-
Hbix PubMed, ScienceDirect, MedRxiv, BioRxiv u Google Scholar. BkntoyeHb! opueuHanbHbie uccnedo8aHus, npuMeHss-
wue Memoodbl MAWUHHO20 06y4YeHUs U 21y60K020 06YYeHUs UCKIYUMebHO Ha OCHOBE KAUHUYECKUX OaHHbIX 015
npoeHo3uposaxus peyudusa KPP. V3 657106 8bisisieHHbIX NyOAUKAYUL KpUmMepUsM BKIIOYeHUS CO0mMBemcmaosa-
JU 43 uccnedosarus, u3 Komopsix 12 sownu 8 memaananus. OueHusanucs 06was naowads nod ROC-kpusoli (AUC),
nokazamenu eemepozeHHocmu (I3, 12, Q-mecm), Hanuyue Ny6AUKAUUOHHO20 CMELYEHUs U YyBCMBUMEeNbHOCMb
pe3ysbmamos. YyscmsumensHOCMb pe3ynbmamos Memaaxanu3a 6sina nodmsepxoeHa memodom leave-one-out.
PE3YJIbTATbI: no pesynsmamam npogedeHHO20 aHAnU3a bb110 YCMaHoB8IeHo, Ymo Haubosiee 4acmo NpuUMeHsemMbiMuU
aneopummamu 6s11u Random Forest (67%), Support Vector Machine (51%) u XGBoost (37%). 06was 06beduHéH-
Has NPo2HOCMUYECKAs MoYyHoCMb Modenell MawUHHO20 06yYeHuUs 8 NPO2HO3UPoBaHUU obweli ssixusaemocms KPP
noka3sana oyeHs xopouwiue pesynemamsl — AUC = 0,86 (95% [JN: 0,82-0,89). Bmecme c mem, 8bisi851€Ha 3HAYUMENb-
Has mexuccnedosamenbCKas eemepozeHHocms (12 = 97,6%, p < 0,001) u ymepeHHoe nybIUKayUOHHOe cMelyeHue.
3AKJIIOYEHUE: sbicokas npozHocmuyeckas moyHocms modenel UM nodmsepxxoaem ux nomeHyuan 015 uHmezpa-
Yuu 8 KIUHUYECKYI0 NPaKmuKy npu npo2Ho3uposaHuu peyudusa KPP. O0HaKo cywecmseHHas 2emepo2eHHoCms
Mex0y UCCned08aHUAMU 02paHU4UBaem BO3MOXHOCMb NPAMO20 CPABHEHUS 3(peKkmusHOCMU pa3nuYHbIX a20-
pumMos u mpebyem ocmopoXxHOCMuU 8 UHMepnpemayuu pe3ybmamos.
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aluate the performance of artificial-intelligence algorithms in predicting long-term treatment outcomes
in patients with colorectal cancer using clinical data alone to evaluate the performance of artificial-intelligence
algorithms in predicting long-term treatment outcomes in patients with colorectal cancer (CRC) using clinical data
alone.
MATERIALS AND METHODS: a systematic search (2015-2024) was conducted in PubMed, Science Direct, MedRxiv,
BioRxiv and Google Scholar. Original studies that applied machine-learning or deep-learning techniques exclu-
sively to clinical variables for predicting CRC recurrence were included. Of 657106 records screened, 43 met
the eligibility criteria; 12 were entered into a meta-analysis. Pooled area under the ROC curve (AUC), hetero-
geneity metrics (I3 72 Q-test), publication bias and sensitivity were assessed. Robustness was examined with
a leave-one-out analysis.
RESULTS: a systematic search (2015-2024) in PubMed, Science Direct, MedRxiv, BioRxiv and Google Scholar. Original
studies that applied machine-learning or deep-learning techniques exclusively to clinical variables for predicting
CRC recurrence were included. Of 657106 records screened, 43 met the eligibility criteria; 12 were entered into
a meta-analysis. Pooled area under the ROC curve (AUC), heterogeneity metrics (I3 2 Q-test), publication bias and
sensitivity were assessed. Robustness was examined with a leave-one-out analysis.
CONCLUSION: AI models show promising accuracy in predicting colorectal cancer recurrence, supporting their poten-
tial utility in clinical decision-making. Nevertheless, further validation in large-scale, prospective studies is required
before widespread clinical implementation.
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BBEOEHWE

MporHo3upoBaHue OTHANEHHbIX PE3yabTaToOB JieueHUs
6onbHbIX KonopekTanbHbiM pakom (KPP) npencraBnser
co6oil OfHY U3 KOUeBbIX 3a4ay OHKONOTMMW, MOCKONb-
Ky no3BoNsieT MEepCcoHanuM3MpoBaTb TepaneBTUYECcKue
cTpaterm v ONTUMU3MPOBATL MOCIEONEPALUOHHbIN
MOHUTOPUHT.

CoBpeMeHHble NOAXOAbl HA OCHOBE WCKYCCTBEHHOMO
uutennekta (UMW), Bkniovatowme anroputmbl MalWMHHO-
ro obydyeHus u rny6okoro obydyeHus, no3sonsioT -
(heKTMBHO aHanu3npoBaTh GONbLIME MACCUBbI JaHHbIX
W yaydWwatb TOYHOCTb NporHosa. Cpeau pasnuyHbIX
BO3MOXHbIX MCTOYHWUKOB WHGMOPMALUM [As aHanu3a,
KNMHWYeCKUe [aHHble SIBNSAIOTCA Haubonee LOCTYMHbI-
MW U CTaHJAPTU3UPOBAHHLIMU ANf NPOrHO3MPOBAHMS
OHKONOTMYECKUX UCXO0B. B oTnuume oT monekynsp-
HO-reHeTUYeCKUX MapKepos, Ux c6Op He TpebyeT Bbl-
COKMX 3aTpaT M CneLmann3upoBaHHOro 1abopaTopHoro
060pYAOBaHUA, YTO [ENAET UX LWMPOKO NPUMEHAEMBIMU
B peanbHoil npakTuke. Kpome Toro, ucnonb3osaHue uc-
KNIOYUTENBHO KIMHUYECKUX NMapaMeTpoB obecneyunBaet
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JYYLWYI0 MHTEPNPETUPYEMOCTL MOAENEN U cnocobCTByeT
UX MHTErpauuu B CyWecTBYOLME NPOTOKONbI BeLEHMUSA
nauMeHToB. Ha cerofHAWHWIA LeHb NPUMEHAIOTCA pas-
JINYHbIE ANTOPUTMbI MAWWHHOTO W rNy6OKOro 0byYeHus,
TaKue Kak rpapueHTHblit 6yctuHr (XGBoost, LightGBM),
Random Forest n aHcambnesble meTopbl. OfHAKO OCTaET-
CA HepewWwEHHbIM BONPOC O TOM, KaKOM U3 3TUX anroput-
MOB Hanbonee 3heKTUBEH AN aHaNU3a KIMHUYECKUX
LaHHBIX M HACKOJIbKO UX MPUMEHEHUEe NO3BOJIUT ONTUMU-
3MpOBaTh TaKTUKY BeaeHus nauueHtos ¢ KPP.

LLEJSTb

AHanu3 COBpEMEHHbIX UCCNeA0BaHWUN, UCMONb3YIOLWMUX
MeTofbl MCKYCCTBEHHOTO WHTENNEeKTa Ans NporHo3npo-
BaHWA OTAANEHHbIX PE3yNbTATOB leYeHUs BONbHbLIX KO-
NIOpeKTabHbIM PAaKOM Ha OCHOBE KIMHUYECKNX AaHHbIX.
OcHoBHOM 3afayeit UCCNeAoBaHNA ABNAETCA CPaBHeHMe
Pa3iMyHbIX aNrOPUTMOB MCKYCCTBEHHOrO WHTENNEKTa,
MX NPOTHOCTUYECKOI TOYHOCTU M MOTEHLMANBHON KNK-
HUYecKon NPUMEHNMOCTH.
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MATEPUATTBI 1 METObI

Mouck Hay4HbIX Ny6AMKALMIA OCYLECTBAANCA C YYETOM
cTaTeil, onybauKoBaHHbIX B nepuop ¢ 2015 no 2024
rr., B NATU BefylMX OHNaiiH-6azax paHHbix: PubMed,
ScienceDirect, MedRXiv, BioRXiv n Google Scholar.
OcHoBHOW nowuckoBblii 3anpoc 6bin «(“Artificial intel-
ligence” OR “Machine learning” OR “Deep learning” OR
“supervised learning” OR “unsupervised learning” OR
“reinforcement learning”) AND (“Colorectal Cancer”
OR “Rectal Cancer” OR “Colorectal adenocarcinoma” OR
“Colon Cancer”) AND (diagnos* OR detect* OR predict*
OR screen*)». [laHHblit 3anpoc NPUMEHANCA NpU Nouc-
ke B PubMed v Google Scholar. OgHako u3-3a orpaHu-
YeHMi NO KONWMYEeCTBY CUMBOJIOB, OH HE MCNONb30BaNCH
B Opyrux 6asax gaHHbeix. Ons ScienceDirect, MedRxiv
n BioRxiv npumeHsanca nouckosslii 3anpoc: (“Artificial
intelligence” OR “Machine learning” OR “Deep learn-
ing”) AND (“Colorectal Cancer” AND “Rectal Cancer”)
AND (predict). B atoT 0630p BOWAM TONBKO WUCCHERO-
BaHMWSA, NOCBAlWeHHble MeToaam U, ucnonb3yembim ans
NPOrHO3MPOBAHUA PUCKA PeLUAMBA UM NPOrpeccupo-
BaHMA KONOPEKTANbHOrO paKa.

B uccnepoBaHue 6biM BKIIOYEHbI OPUTMHANbHbIE UC-
CNIe[0BaHUA, N UCKIIOYEHBI KNIMHUYECKUE HabnioaeHus,
0630pbl UTepaTypbl, 4oKNagsl KoHbepeHuuii. Mbl Tak-
e UCKNIYUAN UCCNef0BaHUA, B KOTOPbIX UCMNO/b30Ba-
JIUCb METOAbI, He cBs3aHHble ¢ M. Kpome Toro, 6binu
WCKNIOYEHBl MCCNEAOBaHWA, NpepocTaBnAWme Teo-
peTuyeckyo ocHoBy ans mogenen WU, npumeHsembix
K KonopeKTanbHOMy paky. [ns paHHoro o63opa pac-
CMaTpUBANMUCh TOJbKO UCCIEA0BaHUS, ONy6ANKOBaHHbIE
Ha aHrIMNCKOM A3blKe.

Mpouecc oTbopa MCCNefOBaHMII COCTOAN U3 Tpex 3Ta-
nos. Ha nepBoM 3Tane Mbl NPOBENW NOUCK NUTEPATYPbI
B BbILIEYNOMAHYTHIX 6a3ax AaHHbIX, 3aTeM UCMOMb30Ba-
v Rayyan ans ypaneHus fy6nuKaToB BCEX BbISIBNEHHbIX
nccnepoBaHuii. Ha BTOpoM 3Tane AiBa He3aBUCUMbIX pe-
LeH3eHTa NpoaHanu3npoBany 3aroNoBKWU U aHHOTALUM
BCEX HaMfEeHHbIX CTaTeil, UCKAIOYMNB UCCNefoBaHUA, He
COOTBETCTBYlOWME TeMe 0630pa. Ha 3aknouutenbHoOM
jTane peLeH3eHTbl He3aBUCUMO PACCMOTPENU MOJiHbIe
TEKCTbl CTaTel, NPOLWeAWnX NpeablayLLniA 3Tan, a Bce
HECOOTBETCTBUA MeXAy peLeH3eHTaMu paspelanuchb
B X0ofie 006CyxKaeHus.

[ns oueHKn 00O0OIWEHHON AMArHOCTUYECKONW TOYHOCTM
Mofeneit MalWwnHHOro 06yyeHus, npefHa3HaYeHHbIX A
NPOTrHO3MPOBAHMA 0OLei BbLIXKWBAEMOCTN Y NaLMeH-
TOB, ObIN NpoBefeH MeTaaHanus 12-TM uccnegoBaHuit.
B Kaxpom uccnefoBaHMM aHanM3MpoBanach MoLeNb
C HaunyylWwum 3Ha4yeHnem niowazam nog kpusoii (AUC).
Cunme3 0aHHbIX

Mocne n3BneveHNA faHHbIX U3 BKIIOYEHHBIX MCCNEf0Ba-
HUW ObIN UCMONb30BAH NOAXO0A HAapPPaTUBHOIO CUHTE3a.

MCKYCCTBEHHbIﬁ UHTENNEKT ANd NPOrHO3UpPOBAHNUSA
OTAAJIEHHBIX Pe3yJIbTATOB JIeYeHNs 6°ﬂhHh|X KOonopekTasbHbIM
pakom (cuctematnueckmit 063op M MeTaaHanms)

CMHTE3 CyMMMPOBAJ M OMUCHIBAN METOAbI UCKYCCTBEHHO-
o UHTENNEKTa, NPUMEHEHHbIE B UCCNEL0BAHUAX, COCPe-
LOTOYMBLIMCH HA UX LENsiX, XapaKTepUCTUKAX, UCTOYHU-
Kax [aHHbIX U anroputmax (Hanpumep, Random Forest,
Support Vector Machine u gp.). Nomumo AUC gononHu-
TeNbHO OLeHMBanM accuracy (06wasn TOYHOCTb), sensi-
tivity / recall (yyBcTBMTENBHOCTL / NONHOTY), specific-
ity (cneuyuduyrocts), precision / PPV (nonoxutenbHyto
NporHocTMYeckylo LeHHocTb), NPV (oTpuuatesnbHyio
NPOrHOCTUYECKYID LeHHOCTb), Fl-score (cpenHee Tou-
HocTW u nonHoThl), C-index (MHAEKC KOHKOPAAHTHOCTM)
n HR (oTHoweHune puckos). Kpome Toro, Mogenu uckyc-
CTBEHHOTO MHTENNEKTA BbIIM COMOCTaB/EHbI MO KtoYe-
BbIM MapameTpaM: TUMY aNropuTMa, XapaKTepUCTUKaM
MCXOLHBIX LaHHbIX (pa3mep BbIGOPKH, BUL, KITMHUYECKO-
ro ucxofa) u Habopy nokasateneil KayecTBa MoAesu.
YnpaBieHne BCeMU U3BNEYEHHBIMU AAHHBIMU Ha NPOTA-
XEHWUM CUHTe3a ocyllecTBasamn B Microsoft Excel.

Cmamucmuyeckuii aHanus

Cratuctnyeckyto 06paboTKy [aHHbIX MeTaaHanu3a Bbl-
nonHanu B RStudio (R v. 4.4.2; R Core Team, Vienna,
Austria) c ucnonb3oBaHuem naketa metafor v. 4.8-0.
Ncxops 13 npennonoxeHus o MexuccnenoBatenbckon
reTeporeHHOCTH, 00befMHEHHDIA 3teKT paccunuTbiBa-
N MO MOLEeNn ciyvanHbix 3PheKToB. YpoBeHb retepo-
reHHOCTW OLEeHWBanNM no cratucTukam t2, 12 n Q-tecty
KokpaHa; 3HaueHus 12 cbiwe 50% TpaKTOBaM KakK BbICO-
KYIO FeTepOreHHOCTb. [N BU3yannu3aLnuu nHAUBUAYaNb-
HbIX M COBOKYMHbIX OLEHOK Obl1 MOCTPOEH NECOBUAHBIN
rpacduk (forest plots), Bo3moxHoe nybnukaumoHHoe
CMelLeHMe NPOBEPSIN NPU NMOMOLLM BOPOHKOOOPA3HOro
rpaduka (funnel plots). C uenbio oueHkM ycToMYNBOCTH
00beaANHEHHOI OLEeHKM, Bbll NPOBEAEH aHANN3 YyBCTBU-
TeNbHOCTU C UcCmonb3oBaHWem Mmetofa leave-one-out:
NOOYEpEAHO WCKIYanach Kaxgas nybnaukauus pns
onpepeneHns eé BanaHus Ha utorosyto AUC n ypoBeHb
reTeporeHHoCTH. Takxe Obll BbINOJHEH MOAEpPALMOH-
HbIl @aHanM3 C TUMOM aNropuTMa B KayecTBe KaTeropu-
anbHOro MofepaTopa A BbIACHEHWA BKNafa KaXzoro
MeTofa B 06LUyt0 BAapMAaTUBHOCTb pe3yNbTaToB.

PE3YJIbTATHI

Pe3ynsmamesl noucka

Mo faHHBIM MOMCKOBLIM 3anpocam ObiN0 UAeHTUDULN-
poBaHo 657106 crateit 13 5-T 6a3 paHHbIx: PubMed
(n=2551), Science Direct (n = 635180), Google Scholar
(n=18900), BioRXiv (n =345), u MedRxiv (n = 130). Bce
cTaTbu 13 6a3 gaHHbix PubMed, BioRXiv, MedRxiv Gbinu
NpoaHanM3MpoBaHbl Ha OCHOBE YKa3aHHOro 3anpoca.
N3-3a 6oabloro obbema crateit u3 6a3 gaHHbIx, Science
Direct n Google Scholar GbinM paccMoTpeHbl TONbKO
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nepsble 400 (OTCOPTUPOBAHHbLIX MO PeNeBaHTHOCTH).
Bcero gns nogpo6HOro aHanusa 6bi10 BKAOYEHO 3526
crateit (Puc. 1).

B xopme nepBoHayanbHOro MNOUCKAa ObIIO BHISABIEHO
657106 cTateit. M3 Hux 3526 cTaTeit GblAM NpoaHanusu-
pOBaHbl, @ 3483 GbINU UCKIOYEHBI MO CAEAYIOLUM NPU-
4MHam: 1214 cTaTeil He ObINN CBA3AHbI C UCKYCCTBEHHbIM
WHTENNeKToM, 348 crateit He ObIIM NOCBALLEHBI KONO-
peKTanbHoOMy paky, 455 6biin 0630pamu NUTEPATYPLI,
a 1366 He UMenu OTHOLWEHUA K NPOrHO3UPOBAHUIO pe-
uMamea. Tak xe 6bi10 McknoyeHo 100 uccnefoBaHmit,
B KOTOPbIX M3y4Yanucb MOLENU WCKYCCTBEHHOrO WHTEN-
fleKTa Ha OCHOBE PAAMONOrMYeCKMUX, FMCTONOTUYECKNX
1306paXeHUN U TEHOMHBIX JaHHbIX. B KOHeYHOM uTore
43 cTaTbW COOTBETCTBOBANAW KpUTEPUAM BKIIOYEHUA
1 6bINKM BKKOYEHBI B laHHbI 0630P.

BrntoyeHHble cmambu

Bce BKNlOYeHHble KMcCnefoBaHWs Obinu onybnMKoBa-
Hbl B peLeH3MpyeMblx XypHanax (43 u3 43, 100%).
My6nukaumm oxsatbiBaloT nepuog ¢ 2018 no 2024 rr.:
2/43 (4,7%) 6binn onybaukosaHel B 2018 rogy, 2/43
(4,7%) — B 2019 ropy, 2/43 (4,7%) — B 2020 rogy, 3/43
(7,0%) — B 2021 rogy, 9/43 (20,9%) — B 2022 rogy,
13/43 (30,2%) — B 2023 ropy u 12/43 (27,9%) —
B 2024 rony. KonnyecTso nayneHToB B 3TUX UCCNefOBa-
HUAX BapbUpoBanoch ot 164 fo 528 060.

Bo Bcex 43 nccnefoBaHnsax MCNOAb30BANNCh anrOPUTMBI
MalWMHHOTO 06yyeHus, npu 3ToM B 3 (7%) uUccnepoBa-
HUAX LOMONHUTENBHO NMPUMEHANUCH METOAbl TNY6OKOro
o6yyeHus. Random Forest okasancs cambiM 4acto uc-
no/ib3yeMbIM aNroOpuUTMOM, 3a[eiCTBOBAaHHbIM B 29/43
(67%) nccnegoBanusax. flanee cnegyet Support Vector
Machine, npumensswniica B 22/43 (51%) uccneposa-
HWK, 3aTem noructuyeckas perpeccus n XGBoost, kax-
Lblii U3 KOTOpbIX BCTpeyancs B 16/43 (37%) uccnepo-
BaHusX. Cpean Npoymnx METOA0B MOXHO 0TMETUTL Naive

WoenT

yepes Gasbl QaHHBIX |

=
&
2| |Maenmucbumposanisie cTaTen n3 Bas
§ Ak (n=B5T 108)
=
— L3
ICramH. MPOLBALLIME CKPUMMHT (N=3 526) | Wckniouennble crated (n=3 483)
* He Gbinu CER3AHL ¢ MCKYCTBEHHLIM
l§_ wHTENNEKTOM (N=1214)
i * He NOCBALIBHLI KONOPEKTANEHOMY
paky (n=348)
4]

« Ofzopw nuTEpaTypel (n=455)
|+ He uMeni oTHOWEHUA &
APOFHOIMPOBAHKIO peuMawsa (n=1366)
* He knnmmueckne gamHse (=100}
+

! CTaThi, BRIKMEHHLIE B oB30p (n=43) |

| BrnioseHmre ||

Pucynok 1. bnok-cxema PRISMA-ScR (npednoumumesibHbie
3/emMeHmbl  omyemHocmu O cucmemamuyeckux 0630pos
U MemaaHanu3os)

Figure 1. PRISMA-ScR flowchart (preferred reporting elements
for systematic reviews and meta-analyses)
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Tabnuua 1. Xapakmepucmuru ucnosib3yembix Memodos UcKyc-
CMBEeHHO20 UHMenekma

Table 1. Characteristics of the artificial intelligence methods
used

UccnepoBanusa

Tunbi N = 43 (100%) UcTouHunk
Tun NN
MawuHHoe obyyeHne | 43/43 (100%) [1-42]
(MO)
[ny6okoe oby4eHne 3/43 (7%) [6,18,43]
(o)

Anroputmbl/mogenu/metoasl UN
29/43 (67%)

Random Forest [1,2,4-12, 14,18, 20,
21, 23-28, 30, 32-35, 40,

42,43]

Support Vector 22/43 (51%) | [1-5,7-10,12, 15, 18,
Machine 20, 21, 23, 27, 30, 32, 35,
41-43]
Logistic Regression 16/43 (37%) | [1,2,4-6,8-12,18, 20,
26, 34,41, 42]

XG Boost 16/43 (37%) | [8,10-12, 14,17, 24, 26,
27,29, 30, 32, 34-37]

Naive Bayes 7/43 (16%) [4,8, 14,18, 21, 25, 41]

Artificial Neural
Networks (ANN/DNN)

Decision Tree

11/43 (26%) | [4,6,9,12,18,19,23,
34, 41, 43]

[5, 6,810, 12, 15, 20, 21,
24,25, 30, 32, 41-43]
[7,13, 24]

[22]

15/43 (35%)

Cat Boost

Auto-AI
(aBTOMaTU3MpOBaAHHbIN
nepebop Mogeneit)
K-Nearest Neighbors
Algorithm

Extreme gradient
boosting model

Gradient Boosting

3/43 (7%)
1/43 (2%)

14/43 (33%) [8,9, 12, 15, 21, 23, 24,
26, 27, 34, 35, 42, 43]

[1, 2,13, 20]

4/43 (9%)

9/43 (21%) [6, 8, 16, 20, 21, 24, 37,

38, 40]
Light GBM 8/43 (19%) [8, 16, 20, 21, 24, 26,
39, 41]
mboost 1/43 (2%) [6]
Ada Boost 3/43 (7%) [7,9,25]

Bayes 7/43 (16%), Artificial Neural Networks 11/43
(26%) v Decision Tree 15/43 (35%). XapaKTepucTuku
MeTopoB WU, npuMeHseMbix B KaXfOM MCCNELOBaHUY,
npefcTaBneHsl B Tabnue 2.

B Tabnuue 2 npefcTaBneHbl KIKOYEBbIE XapaKTEPUCTUKM
NpoBeAEHHbIX UCCNe[0BaHNIA, BKOYatolWMe obliee Ko-
JIMYECTBO MALMEHTOB, YUCNO aHANU3NUPYEMbIX NapameT-
POB, NPUMEHSAEMbIE aITOPUTMbI U UCMOJIb3YEMbIE METOABI
BanMaaLmu. Yalle Bcero B KayecTBe BXOAHbIX NepeMeH-
HbIX DMrypUpoBaNK: BO3PacT, N0, NOKanM3auus onyxo-
NW, CTafisi OMYXONEBOro MpoLecca no knaccuduraLmm
TNM, KonuyecTBo yAaNEHHbIX M MOPAXKEHHbIX NUMEO-
Y3/10B, pa3Mep onyxonu u creneHb uddepeHuMpoBKY,
Hannune NUMQOBACKYNAPHON U NepUHEeBPanbHOR WH-
Ba3uW, CTATyC KPa€p pe3eKLmu, ypoBeHb OHKOMApPKEPOB
CEA v CA 19-9, MyTaLlMOHHbIN CTaTyc, NOKa3aTenu obuue-
ro M 6MOXUMMUYECKOro aHan13a KpoBY NOKa3aTenu KpoBU
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Ta6nuua 2. M1odpobHAs XapaKmepucmuKa BKAKYEHHbIX UCCIe00BAHUL
Table 2. Detailed characteristics of the included studies

Yucno axa-

CatBoost — 77%; RF — 74%; AdaBoost — 75%.

Nporxo3upyeMmblit KnuHu- Konuyecrso
ATop, ro Anroputm . PesynbTatbl Metop Banupaumun NU3UPYeMbIX
4YecKuil ucxop nauueHToB
napametpos
Youngbae Jeon, | SVM, RF, EGB, LR Peuuans AUC: Tomek link 16 961
etal. [1] SVM — 0,79 (95% [N 0,76-0,82); RF — 0,84 (95% [iN: 0,81-0,87);
XGBoost — 0,85 (95% fiA: 0,82-0,88).
Accuracy:
SUM — 76% (95% [IM1: 70-82); RF — 82%; XGBoost -83%.
Sensitivity:
SYM — 70% (95% [iN1: 65-75); RF — 78%; XGBoost — 79%;
Specificity:
SVM — 80% (95% JIl1: 75-85); RF — 86%; XGBoost — 88%;
Mo Tang, et al. LR, RF, EGB, SVM Peunnus AUC: Set Aside Method 20 558
[2] LR — 0,73 (95% l1: 0,70-0,76); RF — 0,74; XGBoost — 0,79.
Accuracy:
LR — 78% (95% [N: 74-82); RF — 79%; XGBoost — 80%.
Sensitivity:
LR — 75% (95% [LiN: 71-79); RF — 76%; XGBoost — 78%.
Specificity:
LR — 80%; RF — 81%; XGBoost -83%.
Wen-Chien Ting, |  SVM, Reduced Peunpus AUC: 10-KpaTHas kpocc- 7 4299
etal. [3] Error Pruning SVM — 0,87 (95% [I: 0,83-0,91); Reduced Error Pruning Tree — Banugauma
Tree 0,62.
Accuracy:
SUM — 83% (95% [IM1: 79-87); Reduced Error Pruning Tree — 78%.
Sensitivity:
SVM — 79%; Reduced Error Pruning Tree — 72%.
Specificity:
SVM — 86%; Reduced Error Pruning Tree — 80%.
Achilonu 0J, naive Bayes (NB), Peunans AUC: 10-KpaTHas Kpocc- 13 716
etal. [4] (5,0, LR —0,93; NB — 0,92; RF — 0,94; ANN — 0,95 (95% [i: BanMpaumna
LR, RF SVM, ANN 0,92-0,98).
Accuracy:
LR — 87%; NB — 86%; RF — 88%.
Sensitivity:
LR — 85%; NB — 83%; RF — 86%.
Specificity:
LR — 89%; NB — 87%; RF — 90%.
Chen PC, et al. LR, RF, DT, SVM Peynans AUC: 5-KpaTHas Kpocc- 13 1073
[5] LR —0,87; RF — 0,84; CART — 0,83. Banuaauns
Accuracy:
LR — 84%; RF — 83%; CART — 82%.
Sensitivity:
LR — 81%; RF — 80%; CART — 79%.
Specificity:
LR — 86%; RF — 85%; CART — 84%.
Alinia S, Zhou C, | DT, RF, RSF, GB, Peunans v cMepTHOCTb TpozHo3uposarue cmepmu Train-Test Split 7 284
etal. [6] mboost, DLNN, Accuracy:
Cox Regression RF — 96% (0,81-0,99); GB — 71,4% (0,57-0,83); Mboost — 89%
(0,78-0,96);
Sensitivity:
DT — 78,3% (0,56-0,92); RF — 100% (0,85-1); RSF — 77,5%
(0,66-0,86); GB — 75,9% (0,56-0,89); Mboost — 96,9% (0,83-
0,99);
TpozHo3uposanue peyudusa
Accuracy:
RF — 67,8% (0,47-0,84); RSF — 74% (0,66-0,81); GB — 96%
(0,87-0,99); mhoost — 76% (0,63-087);
Sensitivity:
RF — 100% (0,82-1); RSF — 77,8% (0,66-0,86); GB — 100%
(0,87-1);
Mboost — 96,8% (0,83-0,99);
Specificity:
RF — 0% (0-0,28); RSF — 71% (0,58-0,81); GB — 92,9% (0,76~
0,99); Mboost — 53,8% (0,33-0,73); DLNN — 98% (0,97-0,98)
Erkan K. et al., (atBoost, RF, Peunpus AUC: 10- kpaTHas Kpocc- 9 396
2024 [7] AdaBoost, 16 ML CatBoost — 0,92; RF — 0,78; AdaBoost — 0,80. Banupauma + train-test
models tested Accuracy: split
CatBoost — 88%; RF — 79%; AdaBoost — 69%.
Recall:
CatBoost — 70%; RF — 67%; AdaBoost — 69%.
Precision:
CatBoost — 90%; RF — 81%; AdaBoost — 83%.
F1-score:
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METAAHATIN3 META-ANALYSIS
. Yucno aHa-
Nporxo3upyeMmblit KnuHu- Konuyecrso
AsTop, rop Anroputm N Pesynbrarthl Metop Banupauum NU3UpYeMbIX
YECKHil CXOp nayueHTos
napameTpos
Susic et al., LR, DT,RF, KNN, | 1-,2-, 3 4-, 5-nethss OB 5-nethan 0B 5- KpaTHas Kpocc- 7 1236
2023 [8] Naive Bayes, AUC: BanMpaLua + train-test
SVM, GB, LGBM, LR —0,872; DT — 0,756; RF — 0,810; KNN — 0,800; Naive split
XGBoost Bayes — 0,712; SVM — 0,855; GB — 0,854; LGBM — 0,868;
XGBoost — 0,855.
Guptaetal., RF, SVM, LR, b5PB AUC: 5- KpaTHas Kpocc- 12 4021
2019 [9] Multilayer RF — 0,82 £ 0,10; SVM — 0,77 + 0,03; Logistic Regression: Ba/upaLma + train-test
Perceptron, 0,76 +0,02; split
K-NN, Adaptive MLP — 0,78 +0,11; KNN — 0,75 £ 0,06; AB — 0,77 + 0,03.
Boosting Accuracy:
RF — 84%; SVM — 77%; Logistic Regression — 76%; ML — 78%;
KNN — 75%;
Adaptive Boosting — 77%.
Huetal., 2023 DT, RF, SVM, Peuunaus AUC: 10- kpaTHas kpocc- 12 272
[10] XGBoost, LR Decision Tree — 0,72; Random Forest — 0,97; SYM — 0,89; Ba/upaLma + train-test
XGBoost — 0,94. split
Sensitivity:
(®uHanbHas mogen, Tectoas BbiGopka): 94%
Specificity (®unansHas mogens, Tectosas BbiGopKa): 86,2%
Sensitivity (PuHanbHas Mogenb, Tectoas BbibopKa): 94,4%
Specificity (OunanbHas mogens, Tectosas Bbioopka) 66,7%
Leonard G, et RF, XGBoost, CMepTHOCTD AUC: Train-Test Split 30 528060
al,, 2022 [11] XGBoost with Logistic Regression- 0,730 (95% [l 0,725-0,735);
SMOTE, LR Random Forest- 0,757 (95% [I: 0,752-0,762);
XGBoost- 0,756 (95% [iN: 0,751-0,761); XGBoost with SMOTE-
0,748 (95% M: 0,743-0,753).
Nopour, 2024 Random Forest, 5-netHas 0B AUC: 10-kpaTHas Kpocc- 12 1062
[12] XGBoost, XGBoost: 0,906 (internal), 0,813 (external) (nyywas mogenb) BanuaaLus + external
Bagging, Logistic Random Forest: 0,825 validation
Regression, SVM, Bagging: 0,883
ANN, Decision SVM: 0,815
Tree, KNN ANN: 0,724
Decision Tree: 0,726
KNN: 0,786
Logistic Regression: 0,727
Jietal, 2024 Linear 0B, bPB 1 peunaus Tpozro3uposarue 0B AUC: 5-KpaTHas Kpocc- 12 1330
[13] Regression, LR: 0,75 (0,70-0,80); LDA: 0,76 (0,71-0,81); XGBoost- 0,71 (0,64~ | BanupaLus + bootstrap
Linear 0,76); CatBoost- 0,75 (0,70-0,81). validation
Discriminant TMpozro3uposarue 5PB AUC:
Analysis, eXtreme LR- 0,71 (0,61-0,80); LDA- 0,71 (0,61-0,80); XGBoost- 0,69 (0,60~
GB, CatBoost 0,78); CatBoost-0,75 (0,69-0,82)
Mpozro3uposarue peyudusa
LR- 0,80 (0,65-0,92); LDA- 0,83 (0,69-093); XGBoost- 0,81 (0,65-
0,93) ; CatBoost- 0,82 (0,67-0,93) .
Cardoso et al., NB, RF, XGBoost 1-NeTHASR, 3-X NeTHsS, 5-netHas 0B Train-test split, ROC 10 29670
2023 [14] 5-neTHas 0B AUC: curve evaluation
Naive Bayes — 0,765; Random Forest — 0,844; XGBoost — 0,845.
Kos et al., 2024 | DT, SVM, K-NN, 08B AUC: 10-KpaTHas Kpocc- 20 498
[15] Ensemble SVM — 0,84; DT — 0,81; Ensemble — 0,83; NN — 0,76; KNN — BaMgaLma
Classifier, NN 0,76.
Osman et al., Light GBM 5-neTHas 0B AUROC 18-KpaTHas kpocc- 12 364316
2022 [16] External Validation- 0,805; Sensitivity — 68,14%; Banugauma
Positive Predictive Value- 49,88%.
Rodriguez etal.,, | XGBoost, Lasso, Peunans AUC 10-kpaTHas Kpocc- 18 448
2023 [17] Ridge, Elastic XGBoost — 0,87 (6 mecaes), 0,94 (54 mecaua); BanMpaumua
Net, Superlearner Lasso, Ridge, Elastic Net: AUC 0,58-0,69
Zhang W. etal.,, | LR, KNN, SVM, DT, MeracTasupoBanue BRF model AUC 0,874 Internal and external 18 48816
2023 [42] RF, balanced RF C nerue validation
(BRF)
Kudo S.-E. et ANN MeracTasuposanue AUC0,83-0,84 Internal and external 8 4079
al,, 2021 [19] B IMMOY3 bl validation
Wang, Xiaojie et | LASSO, SVM, LR, Metacrasuposatue MLP model 5- KpaTHas Kpocc- 10 2891
al,, 2022 [20] XGB, LightGB, DT, B IMMOY3 bl AUC — 0,873, Sensitivity — 81,0%, Specificity — 82,5% BaNMAALMA
RF, MLP
Chi, Shenggiang | Semi-Supervised 0B AUC0,73 (LR, NN) 5- KpaTHas Kpocc- 6 115217
etal, 2019 LR, LR, SVM, RF, Banugauns
(18] NN, NB
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. Yucno awa-
Nporxo3upyeMmblit KnuHu- Konuyecrso
Astop, rop Anroputm N Pe3synbrathl Metop Banupauum NU3UpYeMbIX
YecKuit ucxop nauueHToB
napametpos
HanT.etal, DT, LGBM, RF, MeracrasupoBanue Stacking Bagging Model AUC 0,9631 10- KpaTHas Kpocc- 16 17111
2023 [21] KNN, SVM, B NeyeHb BanMpauna
(lassification and
Regression Trees,
NB, Bootstrap
aggregating
KasaiS.etal., | “Prediction One” MeracTasupoBanue AUC 0,903, accuracy 80,4%, sensitivity 90,0%, specificity 79,4% hold-out validation 17 267
2021 [22] (Sony Network B MMGOY3ALI
Communications)
Masum S. et al., RF, KNN, 06as cmepTHOCTB, 31-, Accuracy 80-96%, 10- kpaTHas kpocc- 41 4336
2022 [23] SVM, MLP, 91-AHeBHaA CMEPTHOCTb Sensitivity 84-93%, BaNMAALMA
Bidirectional Specificity 75-100%
Long Short-Term
Memory (BI-
LSTM)
WoZniacki A. et RF, XGBoost, 1-,3-,5- neTHas 0B 1-neThuit nokasarens (LightGBM): Accuracy 0,8187, F1-score 10- KpaTHas Kkpocc- 58 72961
al., 2024 [24] (atBoost, LGBM, 0,7544, TounocTb 0,7904, recall 0,7356, AUC 0,855. Banugauns
GB, Extra Trees, 3-neThuit nokasarens (Gradient Boosting): Accuracy 0,7861, F1-
KNN, DT score 0,7811, precision 0,7803, recall 0,7821, AUC 0,865.
5-neTuit nokasarens (CatBoost): accuracy 0,8185, F1-score
0,7615, precision 0,716, recall 0,7534, AUC 0,885.
061was cmeptHoCTb (RF): accuracy 0,7889, F1-score 0,746,
precision 0,7870, recall 0,7689, AUC 0,861.
Oliveira T. etal, | Kombunauus: 1, 2-, 3+, 4-, 5-netHss OB 5-nethas 0B 10- kpaTHas Kpocc- 61 27795
2018 [25] Bagging, 06opouHas KuwKa: Banupauma
AdaBoost, Accuracy 96,45%,
Bayesian AUC0,985;
Boosting, MpAmas Kuwka:
Stacking, Accuracy 94,51%,
Voting + k-NN, AUC0,971.
NB, DT, RF
Qiu, Binxuetal,, | RF, LGBM, XGB, MeracTasuposanue XGB: 10- KpaTHas Kkpocc- 1 20882
2022 [26] multilayer B NIeYeHb AUC — 0,926, accuracy — 0,919, sensitivity — 0,740, specificity — BaNMAALMA
perceptron 0,765
(MLP), LR, KNN
Liu, Yuan etal., | XGBoost, RF, SVM, MeracTasupoBaHue XGBoost: 10- KpaTHas Kkpocc- 38 1151
2024 [27] KNN B NeyeHb AUC 0,922 (0,833-0,995), accuracy 0,908 (0,889-0,926), sensitivity EENENTE
0,924 (0,873-0,975), specificity 0,883 (0,810-0,956)
LiX. etal, 2024 | ggplot235.1, 1-, 3, 5-netHss 0B AUC Internal and external 17 356
[28] glmnet 4,1.8, 1-neTHuii nokasarenb validation
xgboost 1,7.7,1, 0,874 (95%1 0,809-0,939),
RFSRC3,3.0, 3-neTHuit noKasatenb
ggvenn 0,110, 0,929 (95%1M 0,884-0,975),
rms 5-neTHuit nokasatenb
0,889 (95%[1 0,812-0,966);
C-index 0,862 (95%[}1 0,818-0,906)
Qiu, Binxu et al., XGB OtpanenHoe AUC — 0,814; AUPRC — 0,609; accuracy — 0,800; 10- KpaTHas kpocc- 12 25045
2023 [29] MeTacTasupoBaHme precision — 0,810 BaNMAALMA
XingY.etal,, XGB, DT, RF, SYM Meracrasuposatue AUC: holdout validation 12 51632
2024[30] B NIEY€Hb XGB 0,85;
DT —0,83;
RF—0,84;
SYM—0,71
Zhao, Betal., Cox proportional 3-netss 0B (-index 0,761-0,794 internal and external 12 19364
2020 [31] hazard regression validation
with lasso
regression
Orafaie A. etal, |  RF, Recursive 0BwbPB NporHo3uposanue peunamsa: Sensitivity — 75%, specificity — | K-fold cross-validation 8 200
2024 [32] Feature 75,7%,
Elimination, AUC — 0,666;
simulated NporHo3uposanue 0B: sensitivity — 80,5%, specificity — 64,8%,
annealing, SVM, AUC— 0,630
DT, XGB
Tian, Yu et al., Cox regression, 0B C-index 0,898 (0,895-0,902) Kpocc-Banupauma 9 128061
2018 [33] AFT model, RF
WeiR. etal., RF, LR, XGB, NN, OtpanexHoe RF Kpocc-Banupauma 15 200958
2024 [34] KNN MeTacTasupoBaHme AUC — 0,843
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META-ANALYSIS

. Yucno ana-
Nporxo3upyeMmblit KnuHu- Konuyecrso
Astop, rop Anroputm . Pesynbrathl Metop Banupauum NU3NpYeMbIX
YecKuii ucxop nauueHToB
napameTpos
LiJ. etal, 2023 ML models: MeracrasupoBaHue Accuracy 80,8%; precision 80,3%; recall 80,5%; F1-score 80,8% BHewHAs-BanMpaLma 20 1463
[43] SVM, KNN, DT, RF, B NIEYeHb
extra trees.
NLP models:
bidirectional
encoder
representations
from transformer
(BERT)
LiuY.etal, XGBoost, RF, SVM, Peunpus XGBoost: 10-KkpaTHas kpocc- 44 1187
2023 [35] KNN AUC 0,952 KNN: Accuracy — 0,935, Specificity — 0,932 Banupauma
RF: Sensitivity — 0,959
Ishizaki, Tetsuo NN, XGBoost b5PB AUCO,775 5- KpaTHas Kpocc- 14 259
etal., 2023 BaNMaaumua
(36]
Bibault, Jean- XGBoost 10- netHss OB AUC 0,84, accuracy 0,83 KparHas kpocc- 29 2359
Emmanuel et Ba/MgaLma
al., 2021 [37]
Amygdalos, I. et GBDT 08 AUC 0,72; Accuracy 0,69; Sensitivity 0,73; Kpocc-sanugauma 24 487
al., 2023 [38] Specificity 0,66
Piao Z. etal,, LightGBM MeracTasuposanue AUC 0,960; specificity 85,8%; accuracy 92,9%; 5- KpaTHas Kpocc- 12 651
2023 [39] B IMMOY3 bl PPV 36,3%; NPV 100%; sensitivity 100% BaNMAALMA
Yang, Xulin RF, GBM, 5-neTHAs bPB DeepHit: C-index 0,789 5- KpaTHas Kpocc- 23 2157
etal., 2023 DeepSurv, RF: Brier score 0,096 BaNMaaumua
[40] DeepHit, Cox-
Time, N-MTLR
Mohammadi G. | LR, NB,SVM,NN, | TocnuTanbhas cueptHoCTb AUC 10- kpaTHas Kpocc- 23 1853
etal, 2024 DT, LGBM NB — 0,70; LGBM — 0,70. BanupaLua
[41] Sensitivity
LR — 100%,
Specificity:
DT 91%, PPV: DT — 0,53, NPV: LGBM — 0,86,
Accuracy: DT — 0,75

Mpumeyarue: OB — o6was sbixusaemocms; bPB — 6e3peyudusHas sbixusaemocms; RF — cayyalinsii nec; SVM — mawura onopHsix 8ekmopos; LR —
snoeucmuyeckas pezpeccusi; NB — HausHbIl 6adecosckull knaccugukamop; DT — depeso peweHrud; KNN — memod k-6nuxatiwux coceded; XGBoost / GB / GBM /
LightGBM / LGBM / CatBoost — epadueHmHsiii 6ycmuHe; Bagging — 6ymcmpanosas agpeeayus; AdaBoost / AB — adanmusHsili 6ycmuHe; ET — skcmpemansHo
paHdomu3suposarHsie depesss; SuperLearner — aHcambnb Superlearner; RFE — pekypcusHoe uckitoyeHue npusHakos; SA — memod umumayuu omxuea; ANN

/ NN — uckyccmsenHas HelipoHHas cems; MLP — mHozocnoliHbit nepyenmpot; DNN — eny6okas HeliporHas cems; BI-LSTM — 0syHanpasnexHas LSTM-cems;
DeepSurv — HelipoHHas modens sbixusaemocmu DeepSurv; DeepHit — mHoz2ocobsimuliHas HelpoHHas modens DeepHit; Cox-Time — HelipoHHas modens Cox-Time;
N-MTLR — HelipoHHas mynsmu3adaqHas no2ucmudeckas peepeccus; LASSO — L1-peaynapu3osattsiti ombéop npusHakos (LASSO); EN — anacmuyras cemka;
RSF — cyyaiinbiii nec svixusaemocmu; SSLR — nony-cynepsu3suposaHHas nozucmuyeckas peepeccus; AFT — modesnis yckopeHHo20 spemetu 9o cobbimus;
SMOTE — anzopumm SMOTE (cuHmemudyeckoe ysenuyerue mano2o knacca); AUC / AUROC — nnowads nod ROC-kpusoii; AUPRC — nnowads nod PR-kpusod; Brier
score — owubka bpuepa; Precision / PPV — nonoxumensHas npozHocmuyeckas yeHHocms,; Recall / Sensitivity — yyscmsumensHocms (nonHoma); Specific-

ity — cneyugpuyrocms,; Accuracy — obuwas moyHocmes; F1-score — cpedHee moyHocmu u yyscmaumensHocmu; C-index — uHdekc koHkopdanmuocmu; NPV —
ompuyamensHas npocHocmu4eckas yeHHocms; HR — omuoweHue puckos; OR — omHoweHue warcos; 12 — cmamucmuka 2emepozeHHocmu I-kgadpam; 12 —

mexuccnedosamensckas oucnepcus t-ksadpam; Q-test — mecm Kokpaxa Q

W xapakTep NpOBefEHHOro nedyeHus. MNpepcTaBieHHble
AaHHble cnyxaT 0630poM UCCNefoBaTeNbCKOMO AM3aii-
Ha M METOL0NOTMYECKUX MOAXOAOB, NO3BONAS OLEHUTH
MaclwTabbl BHIGOPOK M 060CHOBAHHOCTb UCMONb3YEMbIX
mogeneil. B Tabnuue 3 npeactaBneHo pacnpepaeneHue
UCCNenoBaHuMii No KONNYECTBY U3yUYeHHbIX NPU3HAKOB.
N3 npefcTaBneHHbIX JaHHbIX CEAYET, YTO OOMbINHCTBO
uccneposanuit (16 nccneposanuit, 37,2%) BKAOYANU
10-15 npu3HAKOB AaNs NpoBeAeHUA AaNbHelwWwero aHa-
nu3a. Nokaszatenu 3hPeKTUBHOCTH BO BKIKOYEHHBIX CTa-
TbAX NPeACTaBNEeHbl B TabnuLe 4.

Kak npeactaBneHo B Tabnuue 4, Haubonee 4acto npu-
MeHABWMMCA noKasaTenem 3ddeKTUBHOCTM ABUAACH
nnowanb nop ROC-kpusoit (AUC), dwurypuposasiuas
B 37/43 (86%) nccnefoBaHMAX C AMana3oHOM 3Haye-
Hu ot 0,58 po 0,985. TouHocTb (Accuracy) npUMeHs-
nacb B 20/43 (46,5%) paboTax 3HauYeHWs BapbUpoBa-
AnUcChb oT 47,4% 1o 96%. MNoka3atenb YyBCTBUTENBHOCTH

KOJIOMNPOKTOJIOTUS, Tom 24, N2 4, 2025

(Sensitivity) npumensncs B 17/43 (39,5%) uccneposa-
HusX, cneuucduyHocTtyn (Specificity) B 16/43 (37,2%) nc-
CNefOBaHUAX, 3HAYEHUSA YYBCTBUTENBHOCTU Konebanuch
B npegenax 1,75-100%, a cneunduyHoctn — 0-98%.
MonoxwutenbHas nporHoctuyeckas yeHHocts (PPV) npu-
MeHanach B 4/43 (9,3%) nccnefoBaHUAX U Haxogunach
B AnanasoHe 49,88-85%, Torfa Kak otpuuartesbHas npo-
rHocTuyeckas ueHHoctb (NPV) — B 3/43 (7%) c pas-
6pocom 3HauyeHut 70-100%. Mokaszatens C-uHpekca
turypuposan B 4/43 (9,3%) uccnefoBaHusX U Bapbu-
posan o7 0,692 no 0,929. F1-score durypuposan B 2/43
(7%) wnccnepoBaHuit ¢ AManasoHoM 3HaueHuit ot 75%
£o 80,8%, Precision 4/43 (9,3%) — 77,16-90% u Recall
3/43 (7%) — 67-80,5%.

Memaananus

Pe3ynbTathl oueHku nnowaam nog kpusoi (AUC) npep-
CTaBfieHbl Ha OCHOBe 12 wWcCCnefoBaHWiA, B KOTOPbIX

KOLOPROKTOLOGIA, vol. 24, N2 4, 2025
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Tabnuua 3. Xapakmepucmuku u munsi 0aHHbIx 8 paccmampusaembix cmamesx (N = 43 uccnedosaruil)
Table 3. Characteristics and types of data in the articles (N = 43)

KonnuecTso BKNOYEHHBIX B aHaNU3 MPpU3HAKOB

Yucno uccneposanuin (N = 43)

UcTouHuk

<10

8/43 (18,6%)

[3,6-8,18,19,32,33]

10-15 16/43 (39,2%) [4,5,9,10,12-14,16,20,26,29-31,34,36,39]
16-20 9/43 (20,9%) [1,2,15,17,21,22,28,42,43]
> 20 10/43 (23,3%) [11,23-25,27,35,37,38,40,41]

Tabnuua 4. Mloxazamenu 3¢hpeKkmuBHOCMU BKOYEHHBIX B aHanu3 uccredosaruli (N = 43 uccnedosaHuti)

Table 4. Performance metrics reported by the studies included in the analysis (N = 43)

Mokasarens WUccnepoBanus Pe3ynbTarsl PP
(N =43) (AnanasoH)
AUC 37/43 (86%) 0,58-0,985 [1-5,7-22,24-30,32,34-37,39,41-43]
TouHocTb (Accuracy) 20/43 (46,5%) 47,4-96% [1-7,9,22-27,29,35,37,39,41,43]
YyBCTBUTENLHOCTD 17/43 (39,5%) 1,75-100% [1-6,10,16,20,22,23,26,27,32,35,39,41]
CneunduyHocTb 16/43 (37,2%) 0-98% [1-6,10,16,20,22,23,26,27,32,35,39,41]
MonoxutensHas nporHocTuyeckasn LeHHocTb (PPV) 4/43 (9,3%) 49,88-85% [16,39,41,43]
OtpuuarensHas npeauKTUBHasA LeHHocTb (NPV) 3/43 (7%) 70-100% [39,41,43]
C-index 4/43 (9,3%) 0,692-0,929 [28,31,33,40]
F1-score 3/43 (7%) 75-80,8% [7,24,43]
Precision 4/43 (9,3%) 77,16-90% [7,24,29,43]
Recall 3/43 (7%) 67%-80,5% [7,24,43]
Tabnuua 5. AHasus 2emepo2eHHOCMU UCCAA0BAHUL
Table 4. Analyses of research heterogeneity
MeTtpuka 3HaueHue WnTtepnpetauyus
12! 97,6 Bbicokas reteporeHHoCTb
p-value Q2 < 0,001 3HauMMble pasnuuns Mexay UccnefoBaHUAMU
g2} 0,289 Bbicokas MexuccnegoBaTensckas BapuabenbHoCTb

lpumeyarue: 'I2 — npoyenm ducnepcuu, 06bAcHAeMol Mexuccaedosamensckoli 2emepozeHHocmbio, °p-value Q — mecm KokpaHa, >12 — ouyeHka

Mexuccnedosamensckoli ducnepcuu.

NpOrHo3MpoBanach 06wWas BbIXKMBAEMOCTb. B Kaxpom
W3 KOTOpbIX Obina BbibpaHa Mofesib C HaWYYLWKUM 3Ha-
yeHnem AUC. Ha necosupgHom rpaduke (Forest plot)
npencrtasneHsl oueHkn AUC u cooTBetcTBytowme 95%
LOBEpUTENbHbIE MHTEPBANbI MO KAXAOMY BKIOYEHHOMY
ncenepoBanuio (Puc. 2).

Haun6onbwee 3HayeHne AUC 6bino 3athMKcpoBaHo B uc-
cnegoBaHum Rodriguez et al. (2023) npu npumeHeHUU
anroputma XGBoost (0,94) [17]. HanmeHblwee 3HaueHue

Study Estimate [95% CI]

]
"
e
Nopour, 2024 - XGBoost —

Susic et al., 2023 - LR 0.87 [0.88, 0.88]
0.91[0.86, 0.94]
Jiet al., 2024 - XGBoost —_—— 0.85[0.77, 0.91]
Kos et al., 2024 - DT ol 0.89 [0.84, 0.92]
Osman et al., 2022 - LightGBM —a— | 0.82 [0.79, 0.84]
Rodriguez et al, 2023 - XGBoost 1 —— 0.94 [0.92, 0.96]
Chi, Shenggiang et al,, 2019 - S5LR [ ] | 0.72 [0.71,0.73]
Wozniacki A. et al., 2024 - CatBoost U B - 0.89 [0.85, 0.91]
Unknown - LightGBM I 0.89 [0.85, 0.92]
Lietal, 2024 - LR —_ 0.91 [0,83, 0.95]
Bibault et al., 2021 - GB —a 0.84 [0.79, 0.88]
Mohammadi et al., 2024 - NB ——— : 0.70 [0.65, 0.75]
Random-Effects Model i 0.86 [0.82, 0.89]

r T T T b 1

0.5 06 07 08 09 1

AU (nyewan Mogens)

PucyHok 2. Mpagpux Forest plot o6veduréHHbix oyeHok AUC
N0 BKOYEHHBIM UCCICO0BAHUAM

Figure 2. Graph Forest plot of combined estimates AUC for in-
cluded studies

MCK)’CCTBeHHbIﬁ MHTENNEeKT ANs NPOrHO3MPOBAHMS
OTAAJIEHHBIX PEe3YyNbTATOB JIE4EeHNS 60ﬂhHh|X KONOPEKTAJIbHbIM
pakom (cuctematnueckmit 063op M MeTaaHanms)

AUC 6bino npepcTasneHo B uccnegosadum Mohammadi
etal. (2024) — NB (0,70) [41]. 06061WéEHHOe 3HaYeHNMe
AUC cocTasuno 0,86 (95% [1: 0,82-0,89). [ins Konuye-
CTBEHHOW OLEHKN BapuabenbHOCTU MeX Ay BKOYEHHbI-
MU UCCNIeLOBAHUAMY ObIN NPOBEAEH aHANN3 reTepOoreH-
HocTu (Tabn. 5).

AHanus reTeporeHHOCTM MNOKa3an BbICOKYID CTeneHb
BapuabenbHOCTU MeXAy BKIOYEHHBIMWU UCCNef0Ba-
HuAMU. 3HavyeHue 12 — 97,6%, yKa3biBaeT Ha Bbipa-
XEHHYI0  MEXWCCNeAoBaTeNbCKyl0  FeTeporeHHOCTb.
Kputepuit Kokpana Q= 669,03, p < 0,001, 4to yKa3biBaeT
Ha CTaTUCTMYECKW 3HA4YUMYI0 TeTeporeHHoOCTb Mexay
nuccneposaHuamu, pesynstat 12 — 0,289 geMoOHCTpu-
pyeT BapuabenbHOCTb MCTUHHBIX 3(dEKTOB  Mexay
nccnefoBaHNAMN.

OueHka nybNMKALMOHHOTO CMeWeHUs npefcTaBieHa
Ha BOpPOHKOOOpasHoit auarpamme (funnel plot), oTo-
Opaalolweii B3aMMOCBA3b MeXAy NoruT-npeobpaso-
BaHHbIMK 3HaueHuamMn AUC 1 ux cTaHpapTHoi ownbKoi
(Puc. 3).

Ha rpadwke Habnoaaetcs ymepeHHas acUMMETpUs pac-
npefeneHna TOYEK B CTOPOHY MOMOXMUTENbHbIX 3Haye-
Hui acdekTa. BusyanbHaa uHTepnpetaLus npoBOANUTCS
Ha OCHOBE CMMMETPUYHOCTU pacnpefeseHns u Tpebyet

Artificial intelligence for predicting long-term outcomes in patients
with colorectal cancer (a systematic review and meta-analysis)
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Funnel Plot (Ny4was mogens no nccnegoBaHuam)
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PucyHok 3. Mpagpuk Funnel plot
Figure 3. Graph of Funnel plot

KONYeCTBEHHOTO NOATBepPXAeHNs. [Ina oueHKM yCToii-
YMBOCTM Pe3yNbTaTOB MeTaaHanu3a 6bin NpoBedéEH aHa-
NU3 YyBCTBUTENBHOCTW C NOCNE[0BATENbHBIM UCKIOYe-
HUeM Kaxgoro uccnegosanus (leave-one-out analysis),
(Puc. 4).

VYnaneHue OGONbWMWHCTBA WCCNEAOBaHWI He npuse-
N0 K CyllecTBeHHbIM u3meHeHuam wutoroson AUC.
Hanbonblwee cHmxenne AUC (go 0,849) n cHuxeHue re-
TeporeHHOCTH (10 94%) HabAt04aN0OCh MPU UCKIOYEHUN
nccnepoBaHus Rodriguez et al., 2023 — XGBoost. [ins
OLEHKM BIMAHWA TUMA anropuTMa Ha BapuabenbHOCTb
06beNHEHHbIX OLEHOK Obll NPOBEAEH MOLEPALIMOHHBIA
aHanu3. B kayecTBe mogepaTtopa ncnonb3oBanach Karte-
ropuanbHas nepeMeHHas — TUn anroputma. PesynbTathbl
npefcTaBieHsl B Tabnue 6.

AnropuTmbl DT u LR npogemoHcTpupoBanu cratuctuye-
CKM 3HayuMoe MNOJOKUTENbHOE BAUAHWE Ha UTOrOBbIiA

AUC (p < 0,001), B T0 e Bpems, anroputmbl NB n SSLR
OblNM CBA3aHbI CO CTAaTUCTUYECKM 3HAYUMBIM CHUIKE-
Huem AUC no cpaBHEHMIO C OCTajbHbIMM MOAENSMM
(p = 0,034 u p = 0,049, cootBeTCTBEHHO). 06WMit TecT
MO[LEpaTOpPOB OKa3aicA CTaTUCTUYECKM 3Hayumbim (QM
(df=7)=15,87,p=0,026).

OBCYXAOEHUE

MpoBefEHHbIM MeTaaHanu3 MOATBEPAMA  BbICOKYIO
NPOrHOCTUYeCKyl0 3(EKTUBHOCTL aNropuTMOB Ma-
WUHHOro 0by4YeHMs B 3afaye npepckasaHus obueit
BbIXKMUBAEMOCTM Y MALMUEHTOB C KONOpeKTaNbHbIM pa-
koM. ObbeanHéHHoe 3HadyeHue AUC cocrtasuno 0,86
(95% [N: 0,82-0,89), 4yTO COOTBETCTBYET XOpoLleit
ANCKPUMUHATUBHOW cnocobHocTn mopeneit. OpHako
BbICOKAsi TeTEPOreHHOCTb MeXay WCCnefoBaHuaMu
(I2 = 97,6%) orpaHnuymBaeT 0606LaeMOCTb NONYYEH-
HbIX pe3ynbTaToB. BepoATHbBIMU UCTOYHUKAMU reTepo-
FeHHOCTW ABNAIOTCA KaK METOA0N0rMYEeCKMe pa3nmnyus
MeXpy uccnefoBaHusMM (Nogxon K oTbopy npusHa-
KOB, YNCNEHHOCTb BbIOOPOK, METOAbI BaNMAaLMM MOSe-
neit), TaK U KNUHUYeCKas HeOJHOPOJHOCTb BKIIOYEH-
HbIX MaUMEHTOB MO CTAAMAM 33ab60NeBaHUs U Lpyrum
XapakTepuctukam. Takum obpa3oM, B YCIOBUAX Bbl-
paXeHHOW MeTOJO0NOrMYecKon U KAMHUYECKOW reTe-
poreHHoCTU nobble npsiMble conocTaBneHus 3ddek-
TUBHOCTU aNropuTMOB MOTYT GbITb METOLONOTMYECKH
Heo60CHOBAHHbIMMK.

BnuaHwe ncknwoveHus nccnegoeadusa Ha AUC u |2
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PUCYHOK 4. AHanu3 yyscmsumesnbHOCMU: BAUAHUE UCKOYeHUs omoenbHbix ucciedosaHuli Ha obbeduHéHHyo AUC u 2emepo-
2eHHocmsb (I2) npu nooyepeOHoOM UcKaOYeHUU omoesbHbix nybaukayul. CuHas auHus — o6veduHénHas oyenka AUC. KpacHas

NYHKMUPHAA TUHUA — YPOBEHb cemepoceHHocmu Iz

Figure 4. Sensitivity analysis: the effect of exclusion of individual studies on combined AUC and heterogeneity (I2) when indi-
vidual publications are excluded in turn. The blue line is the combined AUC score. The red dotted line is the heterogeneity level 12
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Tabnuua 6. ModepayuoHHbll aHanus: sauaHue anzopumma U Ha sapuabensHocms AUC
Table 6. Moderation analysis: the effect of the artificial intelligence algorithm on variability AUC

Anroputm Ouenka (norut AUC) CraHpapTHas owun6Ka A1 (Hmmnan AN (sepxHas p-value
rpasuua) rpauuua)

DT 0,4097 0,4097 1,2377 2,8436 <0,001
GB 0,5974 0,5974 -1,1207 1,2209 0,273
LightGBM 0,4581 0,5854 -1,2481 2,1643 0,289
LR 0,9487 0,5987 -0,1986 2,0961 0,118
NB -1,5719 0,5719 -2,3143 -0,0724 0,034
SSLR -0,9148 0,4585 -1,8125 -0,017 0,049
XGBoost 0,4847 0,4847 -0,7026 1,1974 0,609

Hanbonee yacto Mcnonb3yembiM anropuTMOM OKa3ancs
Random Forest, npumeHeHHbIN B 65% BKIOYEHHbIX MC-
cnefoBaHuUi. ITOT METOZ XapaKTepu3yeTcs YCTONYMBO-
CTbIO M BbICOKOI CMOCOGHOCTLIO K 0GHAPYXKEHUIO Henu-
HeWHbIX 3aBUCUMOCTE MeXay nepemeHHbIMU. Bbicokue
nokasartenu addekTusHocTn anroputma Random Forest
OblIM NPOAEMOHCTPUPOBAHLI B paboTax Jeon u coasT.,
2023 r. u Chen u coaBsr., 2022 r., rae OH JOCTUT 3Haye-
Huin AUC 0,84 n TouHocTn Gonee 80% [1,5]. Hanbonee
BbICOKME MOKa3aTenn MporHOCTUYECKOW TOYHOCTU Cpe-
LW PACCMOTPEHHbIX WCCNEA0BAHMIA ObiIM  NOAYYEHBI
npu MCNOMb30BaHUM METOAOB FPaaMEeHTHOro OYCTUHTa
(XGBoost). Hanpumep, B wuccneposaHuax Rodriguez
u coasT., 2023 r., Erkan v coaBst., 2024 r., u Gupta u co-
aBT., 2019 r. anroput™m XGBoost gemoHcTpuposan 6o-
nee BbicoKMe 3HaveHna AUC no cpaBHeHUIO C Apyrumm
nogxogamu, pocturas 0,92-0,94, npu 4yBCTBUTENIbHO-
ct1 3o 95% u cneunduyHoctu go 94% [7,9,17]. Metop
onopHbIx BekTopoB (SVM) Takxe npojeMoHCTpupo-
Ban BbICOKYI 3tcekTuBHoCTb. CornacHo wccneposa-
Huto Ting u coarT., 2020 r., LaHHbIA aNTOPUTM AOCTUT
AUC 0,87, TouHocTu 83% u cneuncduyHoctn 86% [3].
AHanormyHble pesynbTaTel NpefcTaBieHsl B paboTe
Achilonu u coasr., 2021 r., rge SVM poctur AUC 0,80
n ToyHoctu 87,8% [4]. OAHaKo, HECMOTPS HA KOHKy-
peHTHble nokasatenu, mogenn SVM umeloT orpaHuyeH-
HYI0 MacLWTabUpyemMoCTb NpU YBENUYEHUU PA3MEPHOCTH
AaHHbIX U TPebyIoT TUlaTeNbHOM HACTPOMKK runepnapa-
METPOB, YTO CHUXAET UX NPAKTUYECKYI NPUMEHUMOCTb.
B oTanyme ot aHcambGneBLIX METOAOB, TaKMX Kak Random
Forest n XGBoost, mogenn SVM meHee yCTONYMBLI K WyMy
B AaHHBIX W TPeOYIOT 3HAYUTENbHBIX BbIYMCIUTENBHBIX
pecypcoB ans 06paboTKu KpynHbiX BIGOpoK. HaumeHee
cTabunbHbIE pe3ynbTaThl NPOAEMOHCTPUPOBAN ANTOPUTM
K-Nearest Neighbors (KNN), koTopbiit cyliecTBeHHO 3a-
BUCUT OT 06BEMA M CTPYKTYPbI AaHHbIX. B nccnenoBanum
Gupta u coast., 2019r., KNN goctur AUC 0,75 [9]. B T0
xe Bpems, TouHocTb KNN coctaBuna 75%, yto yctyna-
et Random Forest (84%) n XGBoost (85%) [9]. Takxe
B nccnepoaHum Kos u coasT., 2024 r., KNN nokasan
AUC 0,76, 4To ABnAeTCA XyAWWUM MokasaTenem cpemu
BCEX PAaCCMOTPEHHbIX MeTOL0B, BKtoyas Support Vector
Machine (0,84) u HelipoHHble cetn (0,76) [15].

MCKYCCTBEHHbIﬁ UHTENNEKT ANd NPOrHO3UpPOBAHNUSA
OTAAJIEHHBIX Pe3yJIbTATOB JIeYeHNs 6°ﬂhHh|X KOonopekTasbHbIM
pakom (cuctematnueckmit 063op M MeTaaHanms)

Yto Kacaetcs o6bEMa BHIOOPOK, 3acNyXuBaeT BHUMA-
HUA TOT (aKT, yTo Mofenu, paspaboTaHHble Ha orpa-
HWYEHHbIX AAHHbIX, TaK e AeMOHCTPUPYIOT BbICOKYIO
MPOTrHOCTUYeCKy 3PdeKTuBHOCTb. B unccnegoBaHum
Leonard u coaBrt., 2022 r., rae G610 NpoaHanM3MpoBa-
HO OrpaHMYyeHHOe KOAW4YecTBO npu3Hakos (MeHee 10
nepemeHHbIx), 3HayeHne AUC BapbupoBano B guanaso-
He 0,74-0,75 n TouHOCTb 76—80%, YTO CBUAETENbLCTBYET
0 BO3MOXHOCTM pPa3paboTKu NPOrHOCTUYECKNUX MOfenei
C BbICOKOIA CTemneHblo NpefcKasaTenbHON cnocobHOCTH
AaXe npu OrpaHUMYeHHOM 0O6BLEME MCXOLHBIX [AHHBIX
[11]. OgHako B 6onblwmHcTBe paboT (33,3%) 6bin0 Npo-
aHanusuposaHo ot 10 go 15 napameTpos, 4TO NO3BOIU-
710 10CTUYb ONTUMANBHOTO 6anaHca Mexay COXHOCTbIO
MOLENN N Ka4yecTBOM MPOrHo3a.

OpHako Habnopaemas 3HEKTUBHOCTb TOFO UAU UHO-
ro anropuTMa MOXeT BapbUpOBaTh MO BAMAHWEM pa3-
JINYHBIX METOLONOMMYECKUX U KNUHUYECKUX (hAaKTOPOB,
TaKUX KaK pa3mep W penpe3eHTaTUBHOCTb UCCeayeMblxX
BbIGOPOK, UCNOJIb3yeMble MOAXOAbl K BaiuAaumm, Kaye-
CTBO UCXOAHBIX AAHHbIX U KONUYECTBO BKAKOYEHHBIX KNK-
HWYeCcKux napametpoB. Pasznuuma B XapakTepucTuKax
Mofenei MOryT OTpaxaTb He CTONIbKO BHYTPEeHHUe npeu-
MyLLeCTBa ONpefenéHHOro anropuTMa, CKobKO BAMAHUE
NOTEHLMANbHbLIX UCTOYHUKOB CUCTEMATUYECKOW OLWINOKY,
BK/I0Yas Ny6AMKALMOHHOE CMeleHe, HEOIHOPOAHOCT
KpUTEPMEB BKIOYEHUS MNALMEHTOB, BapuabenbHoCTb
npouenyp NOArOTOBKM AaHHbIX U HEOAWHAKOBble CTpa-
Teruu nogbopa runepnapameTpoB MOAenei.

OTcyTCcTBME eAMHbIX KPUTEpUEB OLEHKM U HEenosiHoe
onucaHue napameTpoB 0OYy4YeHWUs CHUKAET BOCMPOU3-
BOAMMOCTb U OrpaHMyMBaEeT COMOCTaBMMOCTb pe3yib-
TatoB. BkntouéHHble mogenu VW paznnyanucs no yucny
npepukTopoB (0T 7 [0 44), YTO MOFJIO TaK e NOBAUATL
Ha C/NIOXHOCTb M TOYHOCTb MPOrHO30B. 3HAYMTENbHbIE
pasnnymsa oTMeYeHbl U B YUCTEHHOCTU BbIOOPOK (0T 164
[0 528 060 nayMeHTOB), UCTOYHUKAX JAHHBIX U CTaAUAX
3abonesaHns. OfHM UCCNELOBAHUA BKIKOYANM, NPEUMY-
WeCTBEHHO, MALMEHTOB Ha PaHHUX CTaAuAx, gpyruve —
6onee KAMHMYeCKM pa3HooGpasHble KoropTel. [laHHoe
npefnonoXeHue NoOATBEPXKAAETCA pe3ynbTrataMu aHanu-
3@ YYBCTBUTENBHOCTM: UCKNIOYeHWe 6ONbIIMHCTBA PaboT
He O0Ka3blBano CYLECTBEHHOr0 BAUAHWUA Ha WUTOrOBYIO
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AUC, opgHako yaaneHue ofHOro W3 UCCNefOBaHUIA Npu-
BENO K CHWKEHUID O06bEeAMHEHHO! OLEHKW U YPOBHSA
reTeporeHHOCTH, YTO YKa3biBAET HA €ro 3Ha4yuTesbHblil
BKnag B 06LWylo BapnabenbHOCTb. ITO MOXKET ObITb CBS-
3aHO C BbICOKUM KayecTBOM MOZeNN U ONTUMU3MPOBAH-
HOI HAaCTPOWKON NapaMeTpoB B LJAHHOM UCCEf0BAHUN.
[lononHUTENbHBIM OTPaHUYeHNEM MOXKET ObITb NOTEHLM-
aNbHOe Hannune Ny6ANKALUOHHOTO CMELLEHNS, OLEHEH-
Hoe ¢ nomouwbto funnel plot. YmepeHHas acummeTpus
rpacvka yKasbiBaeT Ha BO3MOXHYI M30MpaTenbHoCTb
ny6nuKauMm MCccnefoBaHUil C MONOXKUTENbHbIMU pe-
3yNbTaTaMu, YTO TaKXKEe MOXET MCKaXaTb arperuposaH-
Hble OLeHKMU.

SAKITKOYEHUE

CoBpeMeHHble MCCNefoBaHUA BCE valle NOAYEPKMBAKOT
Heo6X0AMMOCTb MHTErpaLuM anropuTMOB MalMHHOIO
06yYeHMs B KNMHUYECKYIO NPAKTUKY, YTO CnocobCTBy-
€T MOBbLIWEHNIO TOYHOCTU NMPOrHO3UPOBAHUA pPeuuanBa
KOJIOpeKTanbHOro paka u paspabotke 6onee ahdhekTus-
HbIX MEepPCOHANU3MPOBAHHbIX CTpaTernn nevyenus. [ins
MOBbILWEHNUS BOCMPOM3BOAUMOCTU U KIIMHUYECKON Npu-
MEHUMOCTU MoJeneit Heob6xoaMMa CTaHAAPTU3ALUA NOA-
XOf0B K pa3paboTke, BaNuAaLmUmu 1 oTYETHOCTU MOaeNel
MaWMHHOTO 0byYeHus.
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