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ЦЕЛЬ: оценить эффективность алгоритмов искусственного интеллекта для прогнозирования отдаленных 
результатов лечения больных колоректальным раком (КРР) на основе клинических данных.
МАТЕРИАЛЫ И МЕТОДЫ: проведен систематический поиск научных публикаций за 2015–2024 гг. в базах дан-
ных PubMed, ScienceDirect, MedRxiv, BioRxiv и Google Scholar. Включены оригинальные исследования, применяв-
шие методы машинного обучения и глубокого обучения исключительно на основе клинических данных для 
прогнозирования рецидива КРР. Из 657106 выявленных публикаций критериям включения соответствова-
ли 43 исследования, из которых 12 вошли в метаанализ. Оценивались общая площадь под ROC-кривой (AUC), 
показатели гетерогенности (I², τ², Q-тест), наличие публикационного смещения и  чувствительность 
результатов. Чувствительность результатов метаанализа была подтверждена методом leave-one-out.
РЕЗУЛЬТАТЫ: по результатам проведенного анализа было установлено, что наиболее часто применяемыми 
алгоритмами были Random Forest (67%), Support Vector Machine (51%) и XGBoost (37%). Общая объединён-
ная прогностическая точность моделей машинного обучения в прогнозировании общей выживаемость КРР 
показала очень хорошие результаты — AUC = 0,86 (95% ДИ: 0,82–0,89). Вместе с тем, выявлена значитель-
ная межисследовательская гетерогенность (I² = 97,6%, p < 0,001) и умеренное публикационное смещение.
ЗАКЛЮЧЕНИЕ: высокая прогностическая точность моделей ИИ подтверждает их потенциал для интегра-
ции в  клиническую практику при  прогнозировании рецидива КРР. Однако существенная гетерогенность 
между исследованиями ограничивает возможность прямого сравнения эффективности различных алго-
ритмов и требует осторожности в интерпретации результатов.
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AIM: to  evaluate the  performance of  artificial-intelligence algorithms in predicting long-term treatment outcomes 
in patients with colorectal cancer using clinical data alone to evaluate the performance of artificial-intelligence 
algorithms in predicting long-term treatment outcomes in patients with colorectal cancer (CRC) using clinical data 
alone.
MATERIALS AND METHODS: a systematic search (2015–2024) was conducted in PubMed, Science Direct, MedRxiv, 
BioRxiv and Google Scholar. Original studies that applied machine-learning or deep-learning techniques exclu-
sively to  clinical variables for predicting CRC recurrence were included. Of  657106 records screened, 43 met 
the eligibility criteria; 12 were entered into a meta-analysis. Pooled area under the ROC curve (AUC), hetero-
geneity metrics (I², τ², Q-test), publication bias and sensitivity were assessed. Robustness was examined with 
a leave-one-out analysis.
RESULTS: a systematic search (2015–2024) in PubMed, Science Direct, MedRxiv, BioRxiv and Google Scholar. Original 
studies that applied machine-learning or deep-learning techniques exclusively to  clinical variables for predicting 
CRC recurrence were included. Of  657106 records screened, 43 met the  eligibility criteria; 12 were entered into 
a meta-analysis. Pooled area under the ROC curve (AUC), heterogeneity metrics (I², τ², Q-test), publication bias and 
sensitivity were assessed. Robustness was examined with a leave-one-out analysis.
CONCLUSION: AI models show promising accuracy in predicting colorectal cancer recurrence, supporting their poten-
tial utility in clinical decision-making. Nevertheless, further validation in large-scale, prospective studies is required 
before widespread clinical implementation.
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ВВЕДЕНИЕ

Прогнозирование отдаленных результатов лечения 
больных колоректальным раком (КРР) представляет 
собой одну из  ключевых задач онкологии, посколь-
ку позволяет персонализировать терапевтические 
стратегии и  оптимизировать послеоперационный 
мониторинг.
Современные подходы на  основе искусственного 
интеллекта (ИИ), включающие алгоритмы машинно-
го обучения и  глубокого обучения, позволяют эф-
фективно анализировать большие массивы данных 
и  улучшать точность прогноза. Среди различных 
возможных источников информации для анализа, 
клинические данные являются наиболее доступны-
ми и  стандартизированными для прогнозирования 
онкологических исходов. В  отличие от молекуляр-
но-генетических маркеров, их сбор не требует вы-
соких затрат и специализированного лабораторного 
оборудования, что делает их широко применяемыми 
в реальной практике. Кроме того, использование ис-
ключительно клинических параметров обеспечивает 

лучшую интерпретируемость моделей и способствует 
их интеграции в  существующие протоколы ведения 
пациентов. На  сегодняшний день применяются раз-
личные алгоритмы машинного и глубокого обучения, 
такие как градиентный бустинг (XGBoost, LightGBM), 
Random Forest и ансамблевые методы. Однако остаёт-
ся нерешённым вопрос о том, какой из этих алгорит-
мов наиболее эффективен для анализа клинических 
данных и насколько их применение позволит оптими-
зировать тактику ведения пациентов с КРР.

ЦЕЛЬ

Анализ современных исследований, использующих 
методы искусственного интеллекта для прогнозиро-
вания отдаленных результатов лечения больных ко-
лоректальным раком на основе клинических данных. 
Основной задачей исследования является сравнение 
различных алгоритмов искусственного интеллекта, 
их прогностической точности и  потенциальной кли-
нической применимости.
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МАТЕРИАЛЫ И МЕТОДЫ

Поиск научных публикаций осуществлялся с  учетом 
статей, опубликованных в  период с  2015 по  2024 
гг., в  пяти ведущих онлайн-базах данных: PubMed, 
ScienceDirect, MedRXiv, BioRXiv и  Google Scholar. 
Основной поисковый запрос был «(“Artificial intel-
ligence” OR “Machine learning” OR “Deep learning” OR 
“supervised learning” OR “unsupervised learning” OR 
“reinforcement learning”) AND (“Colorectal Cancer” 
OR “Rectal Cancer” OR “Colorectal adenocarcinoma” OR 
“Colon Cancer”) AND (diagnos* OR detect* OR predict* 
OR screen*)». Данный запрос применялся при поис-
ке в PubMed и Google Scholar. Однако из-за ограни-
чений по количеству символов, он не использовался 
в  других базах данных. Для ScienceDirect, MedRxiv 
и BioRxiv применялся поисковый запрос: (“Artificial 
intelligence” OR “Machine learning” OR “Deep learn-
ing”) AND (“Colorectal Cancer” AND “Rectal Cancer”) 
AND (predict). В  этот обзор вошли только исследо-
вания, посвященные методам ИИ, используемым для 
прогнозирования риска рецидива или прогрессиро-
вания колоректального рака.
В исследование были включены оригинальные ис-
следования, и исключены клинические наблюдения, 
обзоры литературы, доклады конференций. Мы так-
же исключили исследования, в которых использова-
лись методы, не связанные с  ИИ. Кроме того, были 
исключены исследования, предоставляющие тео-
ретическую основу для моделей ИИ, применяемых 
к  колоректальному раку. Для данного обзора рас-
сматривались только исследования, опубликованные 
на английском языке.
Процесс отбора исследований состоял из  трех эта-
пов. На первом этапе мы провели поиск литературы 
в вышеупомянутых базах данных, затем использова-
ли Rayyan для удаления дубликатов всех выявленных 
исследований. На втором этапе два независимых ре-
цензента проанализировали заголовки и  аннотации 
всех найденных статей, исключив исследования, не 
соответствующие теме обзора. На  заключительном 
этапе рецензенты независимо рассмотрели полные 
тексты статей, прошедших предыдущий этап, а  все 
несоответствия между рецензентами разрешались 
в ходе обсуждения.
Для оценки обобщённой диагностической точности 
моделей машинного обучения, предназначенных для 
прогнозирования общей выживаемости у  пациен-
тов, был проведен метаанализ 12-ти исследований. 
В  каждом исследовании анализировалась модель 
с наилучшим значением площади под кривой (AUC).
Синтез данных
После извлечения данных из включённых исследова-
ний был использован подход нарративного синтеза. 

Синтез суммировал и описывал методы искусственно-
го интеллекта, применённые в исследованиях, сосре-
доточившись на их целях, характеристиках, источни-
ках данных и алгоритмах (например, Random Forest, 
Support Vector Machine и др.). Помимо AUC дополни-
тельно оценивали accuracy (общая точность), sensi-
tivity / recall (чувствительность / полноту), specific-
ity (специфичность), precision / PPV (положительную 
прогностическую ценность), NPV (отрицательную 
прогностическую ценность), F1-score (среднее точ-
ности и полноты), C-index (индекс конкордантности) 
и HR (отношение рисков). Кроме того, модели искус-
ственного интеллекта были сопоставлены по ключе-
вым параметрам: типу алгоритма, характеристикам 
исходных данных (размер выборки, вид клиническо-
го исхода) и  набору показателей качества модели. 
Управление всеми извлечёнными данными на протя-
жении синтеза осуществляли в Microsoft Excel.

Статистический анализ
Статистическую обработку данных метаанализа вы-
полняли в  RStudio (R v. 4.4.2; R Core Team, Vienna, 
Austria) с  использованием пакета metafor v. 4.8-0. 
Исходя из  предположения о  межисследовательской 
гетерогенности, объединённый эффект рассчитыва-
ли по модели случайных эффектов. Уровень гетеро-
генности оценивали по  статистикам τ², I² и  Q-тесту 
Кокрана; значения I² свыше 50% трактовали как высо-
кую гетерогенность. Для визуализации индивидуаль-
ных и совокупных оценок был построен лесовидный 
график (forest plots), Возможное публикационное 
смещение проверяли при помощи воронкообразного 
графика (funnel plots). С целью оценки устойчивости 
объединённой оценки, был проведён анализ чувстви-
тельности с  использованием метода leave-one-out: 
поочерёдно исключалась каждая публикация для 
определения её влияния на итоговую AUC и уровень 
гетерогенности. Также был выполнен модерацион-
ный анализ с типом алгоритма в качестве категори-
ального модератора для выяснения вклада каждого 
метода в общую вариативность результатов.

РЕЗУЛЬТАТЫ

Результаты поиска
По данным поисковым запросам было идентифици-
ровано 657106 статей из  5-ти баз данных: PubMed 
(n = 2551), Science Direct (n = 635180), Google Scholar 
(n = 18900), BioRXiv (n = 345), и MedRxiv (n = 130). Все 
статьи из баз данных PubMed, BioRXiv, MedRxiv были 
проанализированы на  основе указанного запроса. 
Из-за большого объема статей из баз данных, Science 
Direct и  Google Scholar были рассмотрены только 
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первые 400 (отсортированных по  релевантности). 
Всего для подробного анализа было включено 3526 
статей (Рис. 1).
В ходе первоначального поиска было выявлено 
657106 статей. Из них 3526 статей были проанализи-
рованы, а 3483 были исключены по следующим при-
чинам: 1214 статей не были связаны с искусственным 
интеллектом, 348 статей не были посвящены коло-
ректальному раку, 455 были обзорами литературы, 
а 1366 не имели отношения к прогнозированию ре-
цидива. Так же было исключено 100 исследований, 
в  которых изучались модели искусственного интел-
лекта на  основе радиологических, гистологических 
изображений и геномных данных. В конечном итоге 
43 статьи соответствовали критериям включения 
и были включены в данный обзор.
Включенные статьи
Все включенные исследования были опубликова-
ны в  рецензируемых журналах (43 из  43, 100%). 
Публикации охватывают период с  2018 по  2024  гг.: 
2/43 (4,7%) были опубликованы в  2018 году, 2/43 
(4,7%) — в 2019 году, 2/43 (4,7%) — в 2020 году, 3/43 
(7,0%) — в 2021 году, 9/43 (20,9%) — в 2022 году, 
13/43 (30,2%)  — в  2023 году и  12/43 (27,9%)  — 
в 2024 году. Количество пациентов в этих исследова-
ниях варьировалось от 164 до 528 060.
Во всех 43 исследованиях использовались алгоритмы 
машинного обучения, при этом в 3  (7%) исследова-
ниях дополнительно применялись методы глубокого 
обучения. Random Forest оказался самым часто ис-
пользуемым алгоритмом, задействованным в  29/43 
(67%) исследованиях. Далее следует Support Vector 
Machine, применявшийся в  22/43 (51%) исследова-
нии, затем логистическая регрессия и XGBoost, каж-
дый из  которых встречался в  16/43 (37%) исследо-
ваниях. Среди прочих методов можно отметить Naive 

Bayes 7/43 (16%), Artificial Neural Networks 11/43 
(26%) и  Decision Tree 15/43 (35%). Характеристики 
методов ИИ, применяемых в  каждом исследовании, 
представлены в таблице 2.
В таблице 2 представлены ключевые характеристики 
проведённых исследований, включающие общее ко-
личество пациентов, число анализируемых парамет-
ров, применяемые алгоритмы и используемые методы 
валидации. Чаще всего в качестве входных перемен-
ных фигурировали: возраст, пол, локализация опухо-
ли, стадия опухолевого процесса по классификации 
TNM, количество удалённых и  поражённых лимфо-
узлов, размер опухоли и степень дифференцировки, 
наличие лимфоваскулярной и  периневральной ин-
вазии, статус краёв резекции, уровень онкомаркёров 
CEA и CA 19-9, мутационный статус, показатели обще-
го и биохимического анализа крови показатели крови 

Рисунок 1. Блок-схема PRISMA-ScR (предпочтительные 
элементы отчетности для систематических обзоров 
и метаанализов)
Figure 1. PRISMA-ScR flowchart (preferred reporting elements 
for systematic reviews and meta-analyses)

Таблица 1. Характеристики используемых методов искус-
ственного интеллекта
Table 1. Characteristics of the artificial intelligence methods 
used

Типы Исследования
N = 43 (100%) Источник

Тип ИИ
Машинное обучение 
(МО)

43/43 (100%) [1–42]

Глубокое обучение 
(ГО)

3/43 (7%) [6,18,43]

Алгоритмы/модели/методы ИИ
Random Forest 29/43 (67%) [1, 2, 4–12, 14, 18, 20, 

21, 23-28, 30, 32–35, 40, 
42, 43]

Support Vector 
Machine

22/43 (51%) [1–5, 7–10, 12, 15, 18, 
20, 21, 23, 27, 30, 32, 35, 

41–43]
Logistic Regression 16/43 (37%) [1, 2, 4–6, 8–12, 18, 20, 

26, 34, 41, 42]
XG Boost 16/43 (37%) [8, 10–12, 14, 17, 24, 26, 

27, 29, 30, 32, 34–37]
Naive Bayes 7/43 (16%) [4, 8, 14, 18, 21, 25, 41]
Artificial Neural 
Networks (ANN/DNN)

11/43 (26%) [4, 6, 9, 12, 18, 19, 23, 
34, 41, 43]

Decision Tree 15/43 (35%) [5, 6, 8, 10, 12, 15, 20, 21, 
24, 25, 30, 32, 41–43]

Cat Boost 3/43 (7%) [7, 13, 24]
Auto-AI 
(автоматизированный 
перебор моделей)

1/43 (2%) [22]

K-Nearest Neighbors 
Algorithm

14/43 (33%) [8, 9, 12, 15, 21, 23, 24, 
26, 27, 34, 35, 42, 43]

Extreme gradient 
boosting model

4/43 (9%) [1, 2, 13, 20]

Gradient Boosting 9/43 (21%) [6, 8, 16, 20, 21, 24, 37, 
38, 40]

Light GBM 8/43 (19%) [8, 16, 20, 21, 24, 26, 
39, 41]

mboost 1/43 (2%) [6]
Ada Boost 3/43 (7%) [7, 9, 25]
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Таблица 2. Подробная характеристика включенных исследований
Table 2. Detailed characteristics of the included studies

Автор, год Алгоритм Прогнозируемый клини-
ческий исход Результаты Метод валидации

Число ана-
лизируемых 
параметров

Количество 
пациентов

Youngbae Jeon, 
et al. [1] 

SVM, RF, EGB, LR Рецидив AUC:
SVM — 0,79 (95% ДИ: 0,76–0,82); RF — 0,84 (95% ДИ: 0,81–0,87); 

XGBoost — 0,85 (95% ДИ: 0,82–0,88).
Accuracy:

SVM — 76% (95% ДИ: 70-82); RF — 82%; XGBoost -83%.
Sensitivity:

SVM — 70% (95% ДИ: 65-75); RF — 78%; XGBoost — 79%; 
Specificity:

SVM — 80% (95% ДИ: 75-85); RF — 86%; XGBoost — 88%;

Tomek link 16 961

Mo Tang, et al. 
[2]

LR, RF, EGB, SVM Рецидив AUC:
LR — 0,73 (95% ДИ: 0,70–0,76); RF — 0,74; XGBoost — 0,79.

Accuracy:
LR — 78% (95% ДИ: 74-82); RF — 79%; XGBoost — 80%.

Sensitivity:
LR — 75% (95% ДИ: 71-79); RF — 76%; XGBoost — 78%.

Specificity:
LR — 80%; RF — 81%; XGBoost -83%.

Set Aside Method 20 558

Wen-Chien Ting, 
et al. [3]

SVM, Reduced 
Error Pruning 

Tree

Рецидив AUC:
SVM — 0,87 (95% ДИ: 0,83–0,91); Reduced Error Pruning Tree — 

0,62.
Accuracy:

SVM — 83% (95% ДИ: 79-87); Reduced Error Pruning Tree — 78%.
Sensitivity:

SVM — 79%; Reduced Error Pruning Tree — 72%.
Specificity:

SVM — 86%; Reduced Error Pruning Tree — 80%.

10-кратная кросс-
валидация

7 4299

Achilonu OJ, 
et al. [4]

naïve Bayes (NB), 
C5,0,

LR, RF SVM, ANN

Рецидив AUC:
LR — 0,93; NB — 0,92; RF — 0,94; ANN — 0,95 (95% ДИ: 

0,92–0,98).
Accuracy:

LR — 87%; NB — 86%; RF — 88%.
Sensitivity:

LR — 85%; NB — 83%; RF — 86%.
Specificity:

LR — 89%; NB — 87%; RF — 90%.

10-кратная кросс-
валидация

13 716

Chen PC, et al. 
[5]

LR, RF, DT, SVM Рецидив AUC:
LR — 0,87; RF — 0,84; CART — 0,83.

Accuracy:
LR — 84%; RF — 83%; CART — 82%.

Sensitivity:
LR — 81%; RF — 80%; CART — 79%.

Specificity:
LR — 86%; RF — 85%; CART — 84%.

5-кратная кросс-
валидация

13 1073

Alinia S, Zhou C, 
et al. [6]

DT, RF, RSF, GB, 
mboost, DLNN, 
Cox Regression

Рецидив и смертность Прогнозирование смерти
Accuracy:

RF — 96% (0,81–0,99); GB — 71,4% (0,57–0,83); Mboost — 89% 
(0,78–0,96);
Sensitivity:

DT — 78,3% (0,56–0,92); RF — 100% (0,85–1); RSF — 77,5% 
(0,66–0,86); GB — 75,9% (0,56–0,89); Mboost — 96,9% (0,83–

0,99);
Прогнозирование рецидива

Accuracy:
RF — 67,8% (0,47–0,84); RSF — 74% (0,66–0,81); GB — 96% 

(0,87–0,99); mboost — 76% (0,63–0,87);
Sensitivity:

RF — 100% (0,82–1); RSF — 77,8% (0,66–0,86); GB — 100% 
(0,87–1);

Mboost — 96,8% (0,83–0,99);
Specificity:

RF — 0% (0–0,28); RSF — 71% (0,58–0,81); GB — 92,9% (0,76–
0,99); Mboost — 53,8% (0,33–0,73); DLNN — 98% (0,97–0,98)

Train-Test Split 7 284

Erkan K., et al., 
2024 [7]

CatBoost, RF, 
AdaBoost, 16 ML 

models tested

Рецидив AUC:
CatBoost — 0,92; RF — 0,78; AdaBoost — 0,80.

Accuracy:
CatBoost — 88%; RF — 79%; AdaBoost — 69%.

Recall:
CatBoost — 70%; RF — 67%; AdaBoost — 69%.

Precision:
CatBoost — 90%; RF — 81%; AdaBoost — 83%.

F1-score:
CatBoost — 77%; RF — 74%; AdaBoost — 75%.

10- кратная кросс-
валидация + train-test 

split

9 396
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Автор, год Алгоритм Прогнозируемый клини-
ческий исход Результаты Метод валидации

Число ана-
лизируемых 
параметров

Количество 
пациентов

Susič et al., 
2023 [8]

LR, DT, RF, KNN, 
Naive Bayes, 

SVM, GB, LGBM, 
XGBoost

1-, 2-, 3-, 4-, 5-летняя ОВ 5-летняя ОВ
AUC:

LR — 0,872; DT — 0,756; RF — 0,810; KNN — 0,800; Naive 
Bayes — 0,712; SVM — 0,855; GB — 0,854; LGBM — 0,868; 

XGBoost — 0,855.

5- кратная кросс-
валидация + train-test 

split

7 1236

Gupta et al., 
2019 [9]

RF, SVM, LR, 
Multilayer 

Perceptron, 
K-NN, Adaptive 

Boosting

БРВ AUC:
RF — 0,82 ± 0,10; SVM — 0,77 ± 0,03; Logistic Regression: 

0,76 ± 0,02;
MLP — 0,78 ± 0,11; KNN — 0,75 ± 0,06; AB — 0,77 ± 0,03.

Accuracy:
RF — 84%; SVM — 77%; Logistic Regression — 76%; ML — 78%; 

KNN — 75%;
Adaptive Boosting — 77%.

5- кратная кросс-
валидация + train-test 

split

12 4021

Hu et al., 2023 
[10]

DT, RF, SVM, 
XGBoost, LR

Рецидив AUC:
Decision Tree — 0,72; Random Forest — 0,97; SVM — 0,89; 

XGBoost — 0,94.
Sensitivity:

(Финальная модель, Тестовая выборка): 94%
Specificity (Финальная модель, Тестовая выборка): 86,2%
Sensitivity (Финальная модель, Тестовая выборка): 94,4%
Specificity (Финальная модель, Тестовая выборка) 66,7%

10- кратная кросс-
валидация + train-test 

split

12 272

Leonard G, et 
al., 2022 [11]

RF, XGBoost, 
XGBoost with 

SMOTE, LR

Смертность AUC:
Logistic Regression- 0,730 (95% ДИ: 0,725–0,735);

Random Forest- 0,757 (95% ДИ: 0,752–0,762);
XGBoost- 0,756 (95% ДИ: 0,751–0,761); XGBoost with SMOTE- 

0,748 (95% ДИ: 0,743–0,753).

Train-Test Split 30 528060

Nopour, 2024 
[12]

Random Forest, 
XGBoost, 

Bagging, Logistic 
Regression, SVM, 

ANN, Decision 
Tree, KNN

5-летняя ОВ AUC:
XGBoost: 0,906 (internal), 0,813 (external) (лучшая модель)

Random Forest: 0,825
Bagging: 0,883

SVM: 0,815
ANN: 0,724

Decision Tree: 0,726
KNN: 0,786

Logistic Regression: 0,727

10-кратная кросс-
валидация + external 

validation

12 1062

Ji et al., 2024 
[13]

Linear 
Regression, 

Linear 
Discriminant 

Analysis, eXtreme 
GB, CatBoost

ОВ, БРВ и рецидив Прогнозирование ОВ AUC:
LR: 0,75 (0,70–0,80); LDA: 0,76 (0,71–0,81); XGBoost- 0,71 (0,64–

0,76); CatBoost- 0,75 (0,70–0,81).
Прогнозирование БРВ AUC:

LR- 0,71 (0,61–0,80); LDA- 0,71 (0,61–0,80); XGBoost- 0,69 (0,60–
0,78); CatBoost-0,75 (0,69–0,82)

Прогнозирование рецидива
AUC:

LR- 0,80 (0,65–0,92); LDA- 0,83 (0,69–0,93); XGBoost- 0,81 (0,65–
0,93) ; CatBoost- 0,82 (0,67–0,93) .

5-кратная кросс-
валидация + bootstrap 

validation

12 1330

Cardoso et al., 
2023 [14] 

NB, RF, XGBoost 1-летняя, 3-х летняя, 
5-летняя ОВ

5-летняя ОВ
AUC:

Naïve Bayes — 0,765; Random Forest — 0,844; XGBoost — 0,845.

Train-test split, ROC 
curve evaluation

10 29670

Kos et al., 2024 
[15]

DT, SVM, K-NN, 
Ensemble 

Classifier, NN

ОВ AUC:
SVM — 0,84; DT — 0,81; Ensemble — 0,83; NN — 0,76; KNN — 

0,76.

10-кратная кросс-
валидация

20 498

Osman et al., 
2022 [16]

Light GBM 5-летняя ОВ AUROC
External Validation- 0,805; Sensitivity — 68,14%;

Positive Predictive Value- 49,88%.

18-кратная кросс-
валидация

12 364316 

Rodriguez et al., 
2023 [17]

XGBoost, Lasso, 
Ridge, Elastic 

Net, Superlearner

Рецидив AUC
XGBoost — 0,87 (6 месяцев), 0,94 (54 месяца);

Lasso, Ridge, Elastic Net: AUC 0,58–0,69

10-кратная кросс-
валидация

18 448

Zhang W. et al., 
2023 [42]

LR, KNN, SVM, DT, 
RF, balanced RF 

(BRF)

Метастазирование 
с легкие

BRF model AUC 0,874 Internal and external 
validation

18 48816

Kudo S.-E. et 
al., 2021 [19]

ANN Метастазирование 
в лимфоузлы

AUC 0,83–0,84 Internal and external 
validation

8 4079

Wang, Xiaojie et 
al., 2022 [20]

LASSO, SVM, LR, 
XGB, LightGB, DT, 

RF, MLP

Метастазирование 
в лимфоузлы

MLP model
AUC — 0,873, Sensitivity — 81,0%, Specificity — 82,5%

5- кратная кросс-
валидация

10 2891

Chi, Shengqiang 
et al., 2019 
[18]

Semi-Supervised 
LR, LR, SVM, RF, 

NN, NB

ОВ AUC 0,73 (LR, NN) 5- кратная кросс-
валидация

6 115217
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Автор, год Алгоритм Прогнозируемый клини-
ческий исход Результаты Метод валидации

Число ана-
лизируемых 
параметров

Количество 
пациентов

Han T. et al., 
2023 [21]

DT, LGBM, RF, 
KNN, SVM, 

Classification and 
Regression Trees, 

NB, Bootstrap 
aggregating

Метастазирование 
в печень

Stacking Bagging Model AUC 0,9631 10- кратная кросс-
валидация

16 17111

Kasai S. et al., 
2021 [22]

“Prediction One” 
(Sony Network 

Communications)

Метастазирование 
в лимфоузлы

AUC 0,903, accuracy 80,4%, sensitivity 90,0%, specificity 79,4% hold‐out validation 17 267

Masum S. et al., 
2022 [23]

RF, KNN, 
SVM, MLP, 

Bidirectional 
Long Short-Term 

Memory (BI-
LSTM)

Общая смертность, 31-, 
91-дневная смертность

Accuracy 80–96%,
Sensitivity 84–93%,
Specificity 75–100%

10- кратная кросс-
валидация

47 4336

Woźniacki A. et 
al., 2024 [24]

RF, XGBoost, 
CatBoost, LGBM, 
GB, Extra Trees, 

KNN, DT

1-, 3-, 5- летняя ОВ 1-летний показатель (LightGBM): Аccuracy 0,8187, F1-score 
0,7544, Точность 0,7904, recall 0,7356, AUC 0,855.

3-летний показатель (Gradient Boosting): Аccuracy 0,7861, F1-
score 0,7811, precision 0,7803, recall 0,7821, AUC 0,865.

5-летний показатель (CatBoost): accuracy 0,8185, F1-score 
0,7615, precision 0,7716, recall 0,7534, AUC 0,885.

Общая смертность (RF): accuracy 0,7889, F1-score 0,7746, 
precision 0,7870, recall 0,7689, AUC 0,861.

10- кратная кросс-
валидация

58 72961

Oliveira T. et al., 
2018 [25]

Комбинация: 
Bagging, 

AdaBoost, 
Bayesian 
Boosting, 
Stacking, 

Voting + k-NN, 
NB, DT, RF

1-, 2-, 3-, 4-, 5-летняя ОВ 5-летняя ОВ
Ободочная кишка:

Accuracy 96,45%,
AUC 0,985;

Прямая кишка:
Аccuracy 94,51%,

AUC 0,971.

10- кратная кросс-
валидация

61 27795

Qiu, Binxu et al., 
2022 [26]

RF, LGBM, XGB, 
multilayer 
perceptron 

(MLP), LR, KNN

Метастазирование 
в печень

XGB:
AUC — 0,926, accuracy — 0,919, sensitivity — 0,740, specificity — 

0,765

10- кратная кросс-
валидация

11 20882

Liu, Yuan et al., 
2024 [27]

XGBoost, RF, SVM, 
KNN

Метастазирование 
в печень

XGBoost:
AUC 0,922 (0,833–0,995), accuracy 0,908 (0,889–0,926), sensitivity 

0,924 (0,873–0,975), specificity 0,883 (0,810–0,956)

10- кратная кросс-
валидация

38 1151

Li X. et al., 2024 
[28]

ggplot2 3,5.1, 
glmnet 4,1.8, 

xgboost 1,7.7,1, 
RF SRC 3,3.0, 

ggvenn 0,1.10,
rms

1-, 3-, 5-летняя ОВ AUC
1-летний показатель

0,874 (95%ДИ 0,809–0,939),
3-летний показатель

0,929 (95%ДИ 0,884–0,975),
5-летний показатель

0,889 (95%ДИ 0,812–0,966);
C-index 0,862 (95%ДИ 0,818–0,906)

Internal and external 
validation

17 356

Qiu, Binxu et al., 
2023 [29]

XGB Отдаленное 
метастазирование

AUC — 0,814; AUPRC — 0,609; accuracy — 0,800;
precision — 0,810

10- кратная кросс-
валидация

12 25045

Xing Y. et al., 
2024 [30]

XGB, DT, RF, SVM Метастазирование 
в печень

AUC:
XGB 0,85;

DT — 0,83;
RF — 0,84;
SVM — 0,71

holdout validation 12 51632

Zhao, B et al., 
2020 [31]

Cox proportional 
hazard regression 

with lasso 
regression

3-летняя ОВ С-index 0,761–0,794 internal and external 
validation

12 19364

Orafaie A. et al., 
2024 [32]

RF, Recursive 
Feature 

Elimination, 
simulated 

annealing, SVM, 
DT, XGB

ОВ и БРВ Прогнозирование рецидива: Sensitivity — 75%, specificity — 
75,7%,

AUC — 0,666;
Прогнозирование ОВ: sensitivity — 80,5%, specificity — 64,8%,

AUC — 0,630

K‐fold cross‐validation 8 200

Tian, Yu et al., 
2018 [33]

Cox regression, 
AFT model, RF

ОВ C-index 0,898 (0,895–0,902) Кросс-валидация 9 128061

Wei R. et al., 
2024 [34]

RF, LR, XGB, NN, 
KNN

Отдаленное 
метастазирование

RF
AUC — 0,843

Кросс-валидация 15 200958
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и  характер проведённого лечения. Представленные 
данные служат обзором исследовательского дизай-
на и  методологических подходов, позволяя оценить 
масштабы выборок и  обоснованность используемых 
моделей. В  таблице 3 представлено распределение 
исследований по количеству изученных признаков.
Из представленных данных следует, что большинство 
исследований (16 исследований, 37,2%) включали 
10–15 признаков для проведения дальнейшего ана-
лиза. Показатели эффективности во включенных ста-
тьях представлены в таблице 4.
Как представлено в  таблице 4, наиболее часто при-
менявшимся показателем эффективности явилась 
площадь под ROC-кривой (AUC), фигурировавшая 
в  37/43 (86%) исследованиях с  диапазоном значе-
ний от 0,58 до  0,985. Точность (Accuracy) применя-
лась в  20/43 (46,5%) работах значения варьирова-
лись от 47,4% до 96%. Показатель чувствительности 

(Sensitivity) применялся в 17/43 (39,5%) исследова-
ниях, специфичности (Specificity) в 16/43 (37,2%) ис-
следованиях, значения чувствительности колебались 
в  пределах 1,75–100%, а  специфичности  — 0–98%. 
Положительная прогностическая ценность (PPV) при-
менялась в 4/43 (9,3%) исследованиях и находилась 
в диапазоне 49,88–85%, тогда как отрицательная про-
гностическая ценность (NPV)  — в  3/43 (7%) с  раз-
бросом значений 70–100%. Показатель C-индекса 
фигурировал в  4/43 (9,3%) исследованиях и  варьи-
ровал от 0,692 до 0,929. F1-score фигурировал в 2/43 
(7%) исследований с  диапазоном значений от 75% 
до 80,8%, Precision 4/43 (9,3%) — 77,16–90% и Recall 
3/43 (7%) — 67–80,5%.

Метаанализ
Результаты оценки площади под кривой (AUC) пред-
ставлены на  основе 12 исследований, в  которых 

Автор, год Алгоритм Прогнозируемый клини-
ческий исход Результаты Метод валидации

Число ана-
лизируемых 
параметров

Количество 
пациентов

Li J. et al., 2023 
[43]

ML models:
SVM, KNN, DT, RF, 

extra trees.
NLP models:
bidirectional 

encoder 
representations 
from transformer 

(BERT)

Метастазирование 
в печень

Accuracy 80,8%; precision 80,3%; recall 80,5%; F1-score 80,8% Внешняя-валидация 20 1463

Liu Y. et al., 
2023 [35]

XGBoost, RF, SVM, 
KNN

Рецидив XGBoost:
AUC 0,952 KNN: Аccuracy — 0,935, Specificity — 0,932

RF: Sensitivity — 0,959

10-кратная кросс-
валидация

44 1187

Ishizaki, Tetsuo 
et al., 2023 
[36]

NN, XGBoost БРВ AUC 0,775 5- кратная кросс-
валидация

14 259

Bibault, Jean-
Emmanuel et 
al., 2021 [37]

XGBoost 10- летняя ОВ AUC 0,84, accuracy 0,83 Кратная кросс-
валидация

29 2359

Amygdalos, I. et 
al., 2023 [38]

GBDT ОВ AUC 0,72; Accuracy 0,69; Sensitivity 0,73;
Specificity 0,66

Кросс-валидация 24 487

Piao Z. et al., 
2023 [39]

LightGBM Метастазирование 
в лимфоузлы

AUC 0,960; specificity 85,8%; accuracy 92,9%;
PPV 36,3%; NPV 100%; sensitivity 100%

5- кратная кросс-
валидация

12 651

Yang, Xulin 
et al., 2023 
[40]

RF, GBM, 
DeepSurv, 

DeepHit, Cox-
Time, N-MTLR

5-летняя БРВ DeepHit: С-index 0,789
RF: Brier score 0,096

5- кратная кросс-
валидация

23 2157

Mohammadi G. 
et al., 2024 
[41]

LR, NB, SVM, NN, 
DT, LGBM

Госпитальная смертность AUC
NB — 0,70; LGBM — 0,70.

Sensitivity
LR — 100%,
Specificity:

DT 91%, PPV: DT — 0,53, NPV: LGBM — 0,86,
Accuracy: DT — 0,75

10- кратная кросс-
валидация

23 1853

Примечание: ОВ — общая выживаемость; БРВ — безрецидивная выживаемость; RF — случайный лес; SVM — машина опорных векторов; LR — 
логистическая регрессия; NB — наивный байесовский классификатор; DT — дерево решений; KNN — метод k-ближайших соседей; XGBoost / GB / GBM / 
LightGBM / LGBM / CatBoost — градиентный бустинг; Bagging — бутстраповая агрегация; AdaBoost / AB — адаптивный бустинг; ET — экстремально 
рандомизированные деревья; SuperLearner — ансамбль SuperLearner; RFE — рекурсивное исключение признаков; SA — метод имитации отжига; ANN 
/ NN — искусственная нейронная сеть; MLP — многослойный перцептрон; DNN — глубокая нейронная сеть; BI-LSTM — двунаправленная LSTM-сеть; 
DeepSurv — нейронная модель выживаемости DeepSurv; DeepHit — многособытийная нейронная модель DeepHit; Cox-Time — нейронная модель Cox-Time; 
N-MTLR — нейронная мультизадачная логистическая регрессия; LASSO — L1-регуляризованный отбор признаков (LASSO); EN — эластичная сетка; 
RSF — случайный лес выживаемости; SSLR — полу-супервизированная логистическая регрессия; AFT — модель ускоренного времени до события; 
SMOTE — алгоритм SMOTE (синтетическое увеличение малого класса); AUC / AUROC — площадь под ROC-кривой; AUPRC — площадь под PR-кривой; Brier 
score — ошибка Бриера; Precision / PPV — положительная прогностическая ценность; Recall / Sensitivity — чувствительность (полнота); Specific-
ity — специфичность; Accuracy — общая точность; F1-score — среднее точности и чувствительности; C-index — индекс конкордантности; NPV — 
отрицательная прогностическая ценность; HR — отношение рисков; OR — отношение шансов; I² — статистика гетерогенности I-квадрат; τ² — 
межисследовательская дисперсия τ-квадрат; Q-test — тест Кокрана Q
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прогнозировалась общая выживаемость. В  каждом 
из которых была выбрана модель с наилучшим зна-
чением AUC. На  лесовидном графике (Forest plot) 
представлены оценки AUC и  соответствующие 95% 
доверительные интервалы по каждому включённому 
исследованию (Рис. 2).
Наибольшее значение AUC было зафиксировано в ис-
следовании Rodriguez et al. (2023) при применении 
алгоритма XGBoost (0,94) [17]. Наименьшее значение 

AUC было представлено в исследовании Mohammadi 
et al. (2024)  — NB (0,70) [41]. Обобщённое значение 
AUC составило 0,86 (95% ДИ: 0,82–0,89). Для количе-
ственной оценки вариабельности между включённы-
ми исследованиями был проведён анализ гетероген-
ности (Табл. 5).
Анализ гетерогенности показал высокую степень 
вариабельности между включёнными исследова-
ниями. Значение I²  — 97,6%, указывает на  выра-
женную межисследовательскую гетерогенность. 
Критерий Кокрана Q = 669,03, p < 0,001, что указывает 
на  статистически значимую гетерогенность между 
исследованиями, результат τ²  — 0,289 демонстри-
рует вариабельность истинных эффектов между 
исследованиями.
Оценка публикационного смещения представлена 
на  воронкообразной диаграмме (funnel plot), ото-
бражающей взаимосвязь между логит-преобразо-
ванными значениями AUC и их стандартной ошибкой 
(Рис. 3).
На графике наблюдается умеренная асимметрия рас-
пределения точек в  сторону положительных значе-
ний эффекта. Визуальная интерпретация проводится 
на основе симметричности распределения и требует 

Таблица 3. Характеристики и типы данных в рассматриваемых статьях (N = 43 исследований)
Table 3. Characteristics and types of data in the articles (N = 43)

Количество включенных в анализ признаков Число исследований (N = 43) Источник
< 10 8/43 (18,6%) [3,6–8,18,19,32,33]
10–15 16/43 (39,2%) [4,5,9,10,12–14,16,20,26,29–31,34,36,39]
16–20 9/43 (20,9%) [1,2,15,17,21,22,28,42,43]
> 20 10/43 (23,3%) [11,23–25,27,35,37,38,40,41]

Таблица 4. Показатели эффективности включенных в анализ исследований (N = 43 исследований)
Table 4. Performance metrics reported by the studies included in the analysis (N = 43)

Показатель Исследования 
(N = 43)

Результаты 
(диапазон) Источник

AUC 37/43 (86%) 0,58–0,985 [1–5,7–22,24–30,32,34–37,39,41–43]
Точность (Accuracy) 20/43 (46,5%) 47,4–96% [1–7,9,22–27,29,35,37,39,41,43]
Чувствительность 17/43 (39,5%) 1,75–100% [1–6,10,16,20,22,23,26,27,32,35,39,41]
Специфичность 16/43 (37,2%) 0–98% [1–6,10,16,20,22,23,26,27,32,35,39,41]
Положительная прогностическая ценность (PPV) 4/43 (9,3%) 49,88–85% [16,39,41,43]
Отрицательная предиктивная ценность (NPV) 3/43 (7%) 70–100% [39,41,43]
C-indeх 4/43 (9,3%) 0,692–0,929 [28,31,33,40]
F1-score 3/43 (7%) 75–80,8% [7,24,43]
Precision 4/43 (9,3%) 77,16–90% [7,24,29,43]
Recall 3/43 (7%) 67%–80,5% [7,24,43]

Таблица 5. Анализ гетерогенности исследований
Table 4. Analyses of research heterogeneity

Метрика Значение Интерпретация
I² 1 97,6 Высокая гетерогенность
p-value Q 2 < 0,001 Значимые различия между исследованиями
τ² 3 0,289 Высокая межисследовательская вариабельность

Примечание: 1I² — процент дисперсии, объясняемой межисследовательской гетерогенностью, 2p-value Q — тест Кокрана, 3τ² — оценка 
межисследовательской дисперсии.

Рисунок 2. График Forest plot объединённых оценок AUC 
по включённым исследованиям
Figure 2. Graph Forest plot of combined estimates AUC for in-
cluded studies
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количественного подтверждения. Для оценки устой-
чивости результатов метаанализа был проведён ана-
лиз чувствительности с последовательным исключе-
нием каждого исследования (leave-one-out analysis), 
(Рис. 4).
Удаление большинства исследований не приве-
ло к  существенным изменениям итоговой AUC. 
Наибольшее снижение AUC (до 0,849) и снижение ге-
терогенности (до 94%) наблюдалось при исключении 
исследования Rodriguez et al., 2023 — XGBoost. Для 
оценки влияния типа алгоритма на  вариабельность 
объединённых оценок был проведён модерационный 
анализ. В качестве модератора использовалась кате-
гориальная переменная — тип алгоритма. Результаты 
представлены в таблице 6.
Алгоритмы DT и LR продемонстрировали статистиче-
ски значимое положительное влияние на  итоговый 

AUC (p < 0,001), в то же время, алгоритмы NB и SSLR 
были связаны со статистически значимым сниже-
нием AUC по  сравнению с  остальными моделями 
(p  =  0,034 и  p  =  0,049, соответственно). Общий тест 
модераторов оказался статистически значимым (QM 
(df = 7) = 15,87, p = 0,026).

ОБСУЖДЕНИЕ

Проведённый метаанализ подтвердил высокую 
прогностическую эффективность алгоритмов ма-
шинного обучения в  задаче предсказания общей 
выживаемости у  пациентов с  колоректальным ра-
ком. Объединённое значение AUC составило 0,86 
(95% ДИ: 0,82–0,89), что соответствует хорошей 
дискриминативной способности моделей. Однако 
высокая гетерогенность между исследованиями 
(I² = 97,6%) ограничивает обобщаемость получен-
ных результатов. Вероятными источниками гетеро-
генности являются как методологические различия 
между исследованиями (подход к  отбору призна-
ков, численность выборок, методы валидации моде-
лей), так и клиническая неоднородность включён-
ных пациентов по  стадиям заболевания и  другим 
характеристикам. Таким образом, в  условиях вы-
раженной методологической и  клинической гете-
рогенности любые прямые сопоставления эффек-
тивности алгоритмов могут быть методологически 
необоснованными.

Рисунок 3. График Funnel plot
Figure 3. Graph of Funnel plot

Рисунок 4. Анализ чувствительности: влияние исключения отдельных исследований на объединённую AUC и гетеро-
генность (I²) при поочередном исключении отдельных публикаций. Синяя линия — объединённая оценка AUC. Красная 
пунктирная линия — уровень гетерогенности I²
Figure 4. Sensitivity analysis: the effect of exclusion of individual studies on combined AUC and heterogeneity (I2) when indi-
vidual publications are excluded in turn. The blue line is the combined AUC score. The red dotted line is the heterogeneity level I2
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Наиболее часто используемым алгоритмом оказался 
Random Forest, примененный в 65% включённых ис-
следований. Этот метод характеризуется устойчиво-
стью и высокой способностью к обнаружению нели-
нейных зависимостей между переменными. Высокие 
показатели эффективности алгоритма Random Forest 
были продемонстрированы в  работах Jeon и  соавт., 
2023 г. и Chen и соавт., 2022 г., где он достиг значе-
ний AUC 0,84 и точности более 80% [1,5]. Наиболее 
высокие показатели прогностической точности сре-
ди рассмотренных исследований были получены 
при  использовании методов градиентного бустинга 
(XGBoost). Например, в  исследованиях Rodriguez 
и соавт., 2023 г., Erkan и соавт., 2024 г., и Gupta и со-
авт., 2019 г. алгоритм XGBoost демонстрировал бо-
лее высокие значения AUC по сравнению с другими 
подходами, достигая 0,92–0,94, при  чувствительно-
сти до 95% и специфичности до 94% [7,9,17]. Метод 
опорных векторов (SVM) также продемонстриро-
вал высокую эффективность. Согласно исследова-
нию Ting и  соавт., 2020 г., данный алгоритм достиг 
AUC 0,87, точности 83% и  специфичности 86% [3]. 
Аналогичные результаты представлены в  работе 
Achilonu и  соавт., 2021 г., где SVM достиг AUC 0,80 
и  точности 87,8% [4]. Однако, несмотря на  конку-
рентные показатели, модели SVM имеют ограничен-
ную масштабируемость при увеличении размерности 
данных и требуют тщательной настройки гиперпара-
метров, что снижает их практическую применимость. 
В отличие от ансамблевых методов, таких как Random 
Forest и XGBoost, модели SVM менее устойчивы к шуму 
в  данных и  требуют значительных вычислительных 
ресурсов для обработки крупных выборок. Наименее 
стабильные результаты продемонстрировал алгоритм 
K-Nearest Neighbors (KNN), который существенно за-
висит от объёма и структуры данных. В исследовании 
Gupta и соавт., 2019г., KNN достиг AUC 0,75 [9]. В то 
же время, точность KNN составила 75%, что уступа-
ет Random Forest (84%) и XGBoost (85%) [9]. Также 
в  исследовании Kos и  соавт., 2024 г., KNN показал 
AUC 0,76, что является худшим показателем среди 
всех рассмотренных методов, включая Support Vector 
Machine (0,84) и нейронные сети (0,76) [15].

Что касается объёма выборок, заслуживает внима-
ния тот факт, что модели, разработанные на  огра-
ниченных данных, так же демонстрируют высокую 
прогностическую эффективность. В  исследовании 
Leonard и соавт., 2022 г., где было проанализирова-
но ограниченное количество признаков (менее 10 
переменных), значение AUC варьировало в диапазо-
не 0,74–0,75 и точность 76–80%, что свидетельствует 
о возможности разработки прогностических моделей 
с  высокой степенью предсказательной способности 
даже при  ограниченном объёме исходных данных 
[11]. Однако в большинстве работ (33,3%) было про-
анализировано от 10 до 15 параметров, что позволи-
ло достичь оптимального баланса между сложностью 
модели и качеством прогноза.
Однако наблюдаемая эффективность того или ино-
го алгоритма может варьировать под влиянием раз-
личных методологических и  клинических факторов, 
таких как размер и репрезентативность исследуемых 
выборок, используемые подходы к валидации, каче-
ство исходных данных и количество включённых кли-
нических параметров. Различия в  характеристиках 
моделей могут отражать не столько внутренние преи-
мущества определённого алгоритма, сколько влияние 
потенциальных источников систематической ошибки, 
включая публикационное смещение, неоднородность 
критериев включения пациентов, вариабельность 
процедур подготовки данных и  неодинаковые стра-
тегии подбора гиперпараметров моделей.
Отсутствие единых критериев оценки и  неполное 
описание параметров обучения снижает воспроиз-
водимость и  ограничивает сопоставимость резуль-
татов. Включённые модели ИИ различались по числу 
предикторов (от 7 до 44), что могло так же повлиять 
на  сложность и  точность прогнозов. Значительные 
различия отмечены и в численности выборок (от 164 
до 528 060 пациентов), источниках данных и стадиях 
заболевания. Одни исследования включали, преиму-
щественно, пациентов на ранних стадиях, другие —  
более клинически разнообразные когорты. Данное 
предположение подтверждается результатами анали-
за чувствительности: исключение большинства работ 
не оказывало существенного влияния на  итоговую 

Таблица 6. Модерационный анализ: влияние алгоритма ИИ на вариабельность AUC
Table 6. Moderation analysis: the effect of the artificial intelligence algorithm on variability AUC

Алгоритм Оценка (логит AUC) Стандартная ошибка ДИ (нижняя 
граница)

ДИ (верхняя 
граница) p-value

DT 0,4097 0,4097 1,2377 2,8436 < 0,001
GB 0,5974 0,5974 −1,1207 1,2209 0,273
LightGBM 0,4581 0,5854 −1,2481 2,1643 0,289
LR 0,9487 0,5987 −0,1986 2,0961 0,118
NB −1,5719 0,5719 −2,3143 −0,0724 0,034
SSLR −0,9148 0,4585 −1,8125 −0,017 0,049
XGBoost 0,4847 0,4847 −0,7026 1,1974 0,609
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AUC, однако удаление одного из исследований при-
вело к  снижению объединённой оценки и  уровня 
гетерогенности, что указывает на  его значительный 
вклад в общую вариабельность. Это может быть свя-
зано с высоким качеством модели и оптимизирован-
ной настройкой параметров в данном исследовании. 
Дополнительным ограничением может быть потенци-
альное наличие публикационного смещения, оценен-
ное с  помощью funnel plot. Умеренная асимметрия 
графика указывает на  возможную избирательность 
публикации исследований с  положительными ре-
зультатами, что также может искажать агрегирован-
ные оценки.

ЗАКЛЮЧЕНИЕ

Современные исследования всё чаще подчёркивают 
необходимость интеграции алгоритмов машинного 
обучения в  клиническую практику, что способству-
ет повышению точности прогнозирования рецидива 
колоректального рака и разработке более эффектив-
ных персонализированных стратегий лечения. Для 
повышения воспроизводимости и  клинической при-
менимости моделей необходима стандартизация под-
ходов к разработке, валидации и отчётности моделей 
машинного обучения.
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