https://doi.org/10.33878/2073-7556-2023-22-4-89-98

Первый опыт применения робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием системы Senhance® в лечении пациентов с синдромом обструктивной дефекации

Хитарьян А.Г.^{1,2}, Головина А.А.^{1,2}, Велиев К.С.^{1,2}, Межунц А.В.^{1,2}, Алибеков А.З.^{1,2}, Орехов А.А.^{1,2}, Хитарьян В.А.¹, Оплимах К.С.¹

 1 ФГБОУ ВО «Ростовский государственный медицинский университет», кафедра хирургических болезней № 3 (пер. Нахичеванский, д. 29, г. Ростов-на-Дону, 344022, Россия)

²ЧУЗ «Клиническая больница «РЖД-Медицина» (ул. Варфоломеева, д. 92а, г. Ростов-на-Дону, 344011, Россия)

РЕЗЮМЕ ЦЕЛЬ ИССЛЕДОВАНИЯ: изучение начальных результатов применения робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием новой системы Senhance в лечении пациентов с синдромом обструктивной дефекации.

ПАЦИЕНТЫ И МЕТОДЫ: в проспективное когортное исследование включались пациенты, которым проводилось хирургическое лечение синдрома обструктивной дефекации, обусловленного наличием ректоцеле и/или выпадения и/или внутренней инвагинации прямой кишки при помощи робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием системы цифровой лапароскопии Senhance®. Проводился анализ оптимальной расстановки троакаров и расположения роботических рук, оценка продолжительности вмешательства, объема интраоперационной кровопотери. В послеоперационном периоде изучали число рецидивов, число осложнений и степень их тяжести по шкале Clavien-Dindo, выраженность болевого синдрома по ВАШ.

РЕЗУЛЬТАТЫ: в исследование были включены 22 пациента. Средняя длительность оперативного вмешательства составила 87.1 ± 24.3 мин. Объем интраоперационной кровопотери составил 19.8 ± 9.6 мл. Конверсии на открытый или лапароскопический доступы не было. Осложнений оперативного лечения не наблюдалось. Болевой синдром на 1 сутки составил, в среднем, 22,5 мм по ВАШ. При контрольном осмотре анатомического рецидива среди пациентов выявлено не было, медиана периода наблюдения составила 20,4 месяцев (7-22 мес.).

ВЫВОДЫ: выполнение робот-ассистированной вентральной ректопексии с использованием системы Senhance® эффективно и безопасно для пациента. Непосредственные результаты применения роботического доступа сопоставимы с лапароскопическим. Однако использование системы цифровой лапароскопии Senhance® является экономически целесообразным в сравнении с другими роботическими системами.

КЛЮЧЕВЫЕ СЛОВА: обструктивная дефекация, ректоцеле, выпадение прямой кишки, роботическая хирургия, робот Senhance, ректопексия

КОНФЛИКТ ИНТЕРЕСОВ: авторы заявляют об отсутствии конфликта интересов

ДЛЯ ЦИТИРОВАНИЯ: Хитарьян А.Г., Головина А.А., Велиев К.С., Межунц А.В., Алибеков А.З., Орехов А.А., Хитарьян В.А., Оплимах К.С. Первый опыт применения робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием системы Senhance® в лечении пациентов с синдромом обструктивной дефекации. Колопроктология. 2023; т. 22, № 4, с. 89-98. https://doi.org/10.33878/2073-7556-2023-22-4-89-98

The first experience of robot-assisted vental mesh rectopexy using the Senhance® system in the treatment of patients with obstructive defecation syndrome

Alexander G. Khitaryan^{1,2}, Anastasiya A. Golovina^{1,2}, Kamil S. Veliev^{1,2}, Arut V. Mezhunts², Albert Z. Alibekov^{1,2}, Alexey A. Orekhov^{1,2}, Vera A. Khitaryan¹, Kseniya S. Oplimah¹

¹Rostov State Medical University, Department of Surgical Diseases №3 (Nakhichevansky lane 29, Rostov-on-Don, 344022, Russia)

²Private Healthcare Institution "Clinical Hospital" Russian Railways-Medicine" (Varfolomeeva street, 92a, Rostovon-Don, 344011, Russia)

ABSTRACT AIM: to assess primary results of robot-assisted ventral mesh procedure using the new Senhance® robotic system for obstructive defecation syndrome.

> PATIENTS AND METHODS: the prospective cohort study included patients who underwent robot-assisted ventral mesh rectopexy with the Senhance® system for obstructive defecation syndrome caused by rectocele and/or rectal prolapse and/or internal intussusception. The optimal trocar sites, the location of robotic arms, operation time and intraoperative blood loss were evaluated, as well as post-op morbidity rate (Clavien-Dindo scale), pain intensity (VAS scale) and recurrence rate.

> RESULTS: the study included 22 patients. Operation time was 87.1 ± 24.3 minutes. The intraoperative blood loss was 19.8 ± 9.6 ml. No conversion to open or laparoscopic approach occurred, no morbidity occurred. Pain intensity on day 1 was 0.255 mm according to VAS. No anatomical recurrence was revealed. The median follow-up period was 20.4 months (7-22 months).

> CONCLUSIONS: robotic-assisted ventral rectopexy using the Senhance® system is effective and safe. The results are similar to laparoscopic ones. However, the use of the Senhance® system is cost effective compared to other robotic

KEYWORDS: obstructive defecation, rectocele, rectal prolapse, robotic surgery, Senhance robot, rectopexy

CONFLICT OF INTEREST: the authors declare no conflict of interest

FOR CITATION: Khitaryan A.G., Golovina A.A., Veliev K.S., Mezhunts A.V., Alibekov A.Z., Orekhov A.A., Khitaryan V.A., Oplimah K.S. The first experience of robot-assisted vental mesh rectopexy using the Senhance® system in the treatment of patients with obstructive defecation syndrome. Koloproktologia. 2023;22(4):89-98. (in Russ.). https://doi.org/10.33878/2073-7556-2023-22-4-89-98

АДРЕС ДЛЯ ПЕРЕПИСКИ: Хитарьян А.Г., ФГБОУ ВО «РостГМУ», ул. Варфоломеева, д. 92a, Ростов-на-Дону, 344011, Россия; e-mail: khitaryan@amail.com

ADDRESS FOR CORRESPONDENCE: Khitaryan A.G., Rostov State Medical University, Varfolomeeva st., 92a, Rostov-on-don, 344011, Russia; e-mail: khitaryan@gmail.com

Дата поступления — 16.08.2023 Received — 16.08.2023

После доработки — 07.09.2023 Revised — 07.09.2023

Принято к публикации — 09.11.2023 Accepted for publication — 09.11.2023

ВВЕДЕНИЕ

Лапароскопическая вентральная ректопексия сетчатым имплантом (ЛВР) была впервые описана D'Hoore и Penninckx [1], и с момента своего внедрения в клиническую практику получила широкое распространение в качестве метода выбора в лечении пациентов с обструктивной дефекацией, выпадением и внутренней инвагинацией прямой кишки, ректоцеле, энтероцеле [2-5]. С появлением роботической хирургии, постепенно происходило освоение нового доступа при выполнении ректопексии, и к 2015 году доля роботизированных операций в США составила 27% [6]. По данным значительного ряда исследований, роботассистированная вентральная ректопексия сетчатым имплантом (РВР) является безопасной и эффективной альтернативой традиционной лапароскопической технике и демонстрирует сходные анатомические и функциональные результаты при длительном наблюдении [7-10]. В отношении большинства изучаемых параметров, статистически достоверных различий между роботическим и лапароскопическим доступами не выявлено [11], однако в нескольких статьях сообщалось о лучших клинических результатах после роботизированной хирургии по параметрам обструктивной дефекации, недержания кала и сексуальной функции [12-14].

Необходимо отметить, что роботические технологии привнесли в хирургию тазового пролапса ряд технических преимуществ, таких как трехмерное изображение операционного поля, кратное увеличение, более высокая точность манипуляций за счет инструментов с несколькими степенями свободы, снижение тремора рук и улучшенная эргономика для оператора [10,15–17]. Наиболее существенными данные возможности оказались при выполнении диссекции ректовагинальной перегородки до уровня diaphraqma pelvis в ограниченном пространстве малого таза, при выделении и сохранении сосудов и вегетативных нервов, а также максимально глубокой фиксации дистального конца сетки [9,17,18]. За счет данных преимуществ в ряде исследований отмечается тенденция к снижению объёма интраоперационной кровопотери и частоты осложнений и конверсий при роботическом варианте выполнения вентральной ректопексии сетчатым имплантом [8,19-21]. Однако более высокая стоимость и более длительное время операции, по сравнению с лапароскопическим

доступом, заметно снизили первоначальный энтузиазм и замедлили распространение PBP во всем мире [8,21–24].

Длительное время роботическая хирургия была сопряжена с использованием единственной доступной системы — DaVinci® (Intuitive Surgical, Саннивейл, Калифорния, США). В качестве одного из альтернативных технических решений в 2016 году появилась роботизированная хирургическая система The Senhance® Surgical System® Asensus Surgical US, Inc (Дарем, Северная Каролина, США). Главными её отличиями можно считать улучшенную эргономику для оператора, наличие технологии интеллектуального наведения видеокамеры «Eye-Sensing Control» и обратной тактильной связи, многоразовый инструментарий, существенно снижающий расходы на оперативное лечение, развитый искусственный интеллект, позволяющий производить в реальном времени распознавание тканей и разметку на мониторе. Кроме того, система позволяет использовать большой спектр видеосистем различных производителей и те же доступы и инструменты, что для мануальной лапароскопии. А также позволяет применять лапароскопические инструменты и троакары диаметром 3 мм и 5 мм, что снижает травматичность операции. Все эти аспекты позволяют быстрее интегрировать систему в повседневную работу операционной.

На момент публикации данной статьи в доступной научной литературе при поиске по базам данных PubMed, MEDLINE, EMBASE, Scopus, Cochrane library, CENTRAL, ISI Web of Science и eLibrary в период до августа 2023 г. не было представлено опыта выполнения вентральной ректопексии сетчатым имплантом с использованием системы The Senhance® Surgical System® Asensus Surgical US, Inc.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Целью настоящего исследования было изучение собственных начальных результатов применения робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием новой системы Senhance в лечении пациентов с синдромом обструктивной дефекации, обусловленным наличием ректоцеле, внутренней инвагинации или выпадения прямой кишки.

ПАЦИЕНТЫ И МЕТОДЫ

Настоящее исследование является проспективным когортным исследованием, включившим пациентов, которым проводилось хирургическое лечение

синдрома обструктивной дефекации, обусловленного наличием ректоцеле и/или выпадения и/или внутренней инвагинации прямой кишки при помощи робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием системы цифровой лапароскопии Senhance на базе хирургического отделения ЧУЗ КБ «РЖД-Медицина» г. Ростов-на-Дону в период с января 2022 по июнь 2023 года. Всего нами было выполнено 22 операции. Медиана периода наблюдения составила 20,4 месяцев (7–22 мес.). Во время работы с Senhance Surgical System® нами были отмечены ее ключевые особенности:

- Система основана на лапароскопической хирургии. Используются стандартные лапароскопические инструменты, что позволяет ассистенту применять дополнительные троакары и вспомогательные инструменты, а также осуществить быстрый переход на мануальную лапароскопию и возврат к роботической хирургии в случае необходимости (Рис. 1).
- Система Senhance может быть интегрирована в уже существующую в стационаре операционную, с её эндоскопической видеосистемой и энергетическим оборудованием, без необходимости реконструкции или создания новой отдельной операционной. Исключительным отличием от других роботических устройств является совместимость системы с обычными лапароскопическими инструментами 3 мм, 5 мм и 10 мм. Все части робота Senhance могут быть простерилизованы и предназначены для многократного применения. Данные факторы в совокупности существенно снижают расходы на внедрение и использование системы, в сравнении с другими доступными роботическими установками.
- Можно использовать многие HD, UHD или 3D видеосистемы, в том числе с NBI и ICG, и стандартные лапароскопы. Благодаря функции «Eye-Sensing Control» камера может маневрировать параллельно движению глаз хирурга после первоначальной калибровки (Рис. 2).

Рисунок 1. Изображение основных элементов хирургической системы Senhance

Figure 1. Image of the main elements of the Senhance surgical system

• Система имеет специальные датчики, которые передают хирургу силу давления на ткани или натяжение шва, благодаря чему возрастает аккуратность проведения операции.

- Прямой визуальный контакт с командой и наблюдение за операционным столом оператор, управляющий консолью, ассистент и операционная медсестра могут беспрепятственно контактировать друг с другом и находятся в пределах видимости. Лицо хирурга не скрыто окуляром.
- Работа в консоли не вызывает неудобства, позволяя оператору располагаться в эргономичном кресле с поддержкой шеи и спины.
- Для каждой роботизированной руки система рассчитывает оптимальную точку рычага для троакара fulcrum point благодаря чему можно избежать нежелательных движений и повреждения мягких тканей, а смена инструментов занимает менее минуты (Рис. 3).

Рисунок 2. Cockpit с технологией интеллектуального наведения видеокамеры «Eye-Sensing Control» и обратной тактильной связи

Figure 2. Cockpit with the technology of intelligent guidance of the video camera «Eye-Sensing Control» and tactile feedback

Рисунок 3. Совместимость со стандартными лапароскопическими инструментами, быстрота и удобство переключения

Figure 3. Compatibility with standard laparoscopic instruments, speed and convenience of switching

Наш опыт клинического применения подтвердил заявленные преимущества роботизированной системы Senhance Surgical System®, в частности, удобство и эргономичность использования, реализуемые за счет наведения поля зрения хирурга и наличия тактильной обратной связи, а также возможности лапароскопически-ассистированного использования системы.

Робот-ассистированная вентральная ректопексия выполнялась пациентам с синдромом обструктивной дефекации, выражавшемся в необходимости ручного пособия при дефекации, который был обусловлен наличием ректоцеле 3 степени по отечественной классификации [25] и 3-4 стадии по POP-Q [26] и/или наружным выпадением прямой кишки и/ или внутренней инвагинацией прямой кишки по данным дефекографии, в возрасте от 18 до 80 лет без декомпенсированной сопутствующей патологии, а также онкологических, гематологических заболеваний, воспалительных заболеваний толстой кишки и органов малого таза. Все вмешательства выполнялись двумя хирургами, прошедшими обучение и владеющим работой на данной роботической системе, и значительным опытом выполнения колоректальных операций.

Предоперационное обследование включало в себя стандартное клиническое обследование, осмотр в гинекологическом кресле, а также функциональные пробы Вальсальвы, кашлевую, осмотр в положении на корточках, стадирование тазового пролапса по системе POP-Q, колоноскопию, ирригоскопию с дефекографией, а также трансперинеальное, трансвагинальное и трансректальное УЗИ для изучения наличия дефектов мышц тазового дна и анального сфинктера. Тяжесть клинических симптомов оценивали при помощи опросников оценки запоров (Clevel and Clinic Constipation Scoring System) и анальной инконтиненции Векснера (Wexner Incontinence scale) [27].

Нами были собраны данные о продолжительности операции, длительности докинга, расстановке троакаров и роботических манипуляторов и необходимости их перемещения в ходе вмешательства, частоте возникновения интраоперационных осложнений и необходимости конверсии, а также объеме интраоперационной кровопотери и ранних послеоперационных осложнениях, выраженности болевого синдрома на 1 сутки после операции по ВАШ. Для фиксации данных нами использовался протокол TRUST Registry (ClinicalTrials.gov Identifier: NCT03385109). Все данные были обобщены и структурированы в одну базу при помощи программы MS Excel 12 (MicroSoft, США). Проведение настоящего исследования было одобрено локальным этическим комитетом ЧУЗ КБ «РЖД-Медицина». Все пациенты предоставили письменное ОРИГИНАЛЬНЫЕ CTATЬИ ORIGINAL ARTICLES

добровольное информированное согласие на участие в исследовании.

Статистический анализ данных

Описательный статистический анализ осуществляли при помощи программ SPSS Statistic 26.0 (IBM, США) и Statistica 10.0 (StatSoft, США). На первом этапе все количественные данные проверяли на подчинение нормальному закону распределения (НЗР) при помощи критерия Шапиро-Уилка, так как объем выборки составил менее 50. В случаях, если выборка подчинялась НЗР, то описание планировалось проводить в виде среднего и стандартного отклонения ($M \pm SD$). В случаях, если выборка не подчинялась НЗР (уровень значимости p < 0.05), то описание планировалось проводить в виде медианы, 25% и 75% квартилей (Ме $[Q_1;Q_2]$). Для описания категориальных (номинальных) данных использовали абсолютные (количество) и относительные (проценты) данные.

Средний возраст пациентов составил 58 лет (32–77 лет, [50;63]), среднее число родов — 3 (0–4 родов, [2;4]), средний ИМТ — 30,2 кг/м² (18,1–36 кг/м², [25,1;32,2]). Среди ранее выполненных операций на органах малого таза пациентами были указаны 2 экстирпации матки с придатками, 1 надвлагалищная ампутация матки и 4 пациентам было ранее проведено кесарево сечение. Средняя длительность существующих симптомов тазового пролапса составила 8,16 \pm 4 лет (2–20 лет, 8 [5;10]). Средний балл по шкале запоров Clevel and Clinic Constipation scale среди пациентов — 13,8 \pm 5,7 (6–28, 12 [10;19]), стрессовое недержание мочи наблюдалось у трети пациентов (36,4%).

Детали оперативного вмешательства

Все операции выполнялись под эндотрахеальным наркозом в положении Тренделенбурга с наклоном 35° и поворотом стола на левый бок около 15 градусов. Высота расположения операционного стола до начала докинга составила 115 ± 7 см и изменялась в зависимости от анатомических особенностей пациента и толщины передней брюшной стенки. Дополнительная оптимизация рабочего угла инструмента также осуществлялась за счет его длины: для системы доступны стандартные (30 см) и удлиненные инструменты (45 см).

В технике выполнения вентральной ректопексии сетчатым имплантом условно можно выделить следующие этапы:

1. Установка портов и инструментов

Стандартно использовали 5 портов: 1×12 мм, 1×10 мм и 3×5 мм, и располагали их как показано на рисунке 4.

В параумбиликальной точке устанавливали 10 мм оптический троакар, в правой боковой области устанавливали 12 мм роботический троакар для рабочего инструмента, в левой боковой — 5 мм роботический

троакар, управляемый левой рукой оператора. В левой боковой и левой подвздошной области дополнительно устанавливали два 5 мм троакара для вспомогательных инструментов ассистента.

Для выполнения BP мы использовали следующие инструменты:

- 3D-камера с углом 30° Olympus VISERA ELITE II (Olympus Corporation, Япония);
- Роботические атравматичный граспер, иглодержатель, ножницы, монополярный крючок, биполярный диссектор;
- Лапароскопические атравматичный зажим Бэбкока, герниостеплер, биполярный диссектор, граспер, монополярный крючок.

2. Мобилизация прямой кишки

Атравматичным зажимом Бэбкока через левый боковой порт 5 мм ассистент отводил сигмовидную кишку влево и при помощи монополярной коагуляции оператор рассекал брюшину от области мыса крестца до самой глубокой точки Дугласова кармана с выделением и сохранением гипогастрального нерва.

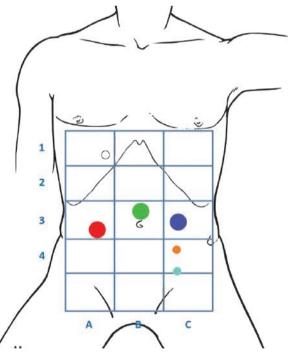


Рисунок 4. Зеленый — первая рука робота, 10 мм, порт для камеры; Красный — вторая рука робота, 12 мм порт; Синий — третья рука робота, 5 мм; Оранжевый, голубой — 5 мм порты для вспомогательных лапароскопических инструментов для ассистента у стола

Figure 4. Green — the first arm of the robot, 10 mm, camera port; Red — the second arm of the robot, 12 mm port; Blue — the third arm of the robot, 5 mm; Orange, blue — 5 mm ports for auxiliary laparoscopic instruments for the assistant at the table

Диссекция выполнялась по передней поверхности прямой кишки в плоскости между ректовагинальной фасцией и фасцией Денонвиллье до уровня тазового дна с визуализацией мышц, поднимающих задний проход с обеих сторон (Рис. 5).

использования системы Senhance при выполнении робот-ассистированных этапов оперативного вмешательства представлены в таблице 1.

3. Установка сетчатого импланта и его фиксация.

В брюшную полость вводили проленовую сетку трапециевидной формы длиной 20 см, шириной по дистальному краю 5 см, по проксимальному — 2,5 см. Сетчатый имплант фиксировали от самой глубокой точки диссекции к мышцам, поднимающим задний проход с обеих сторон отдельными узловыми швами и по передней поверхности прямой кишки к мезоректальной фасции нитью ПДС 2.0 (Рис. 6). Проксимальный конец импланта фиксировали к пресакральной фасции 1—2 узловыми швами нитью Ethibond 2/0 (Рис. 7).

4. Закрытие

После тщательного контроля гемостаза и убедившись в адекватности репозиции, ушивали брюшину непрерывным швом, удаляли инструменты. Дренирование малого таза стандартно не выполняли.

Роботические руки-манипуляторы располагали у операционного стола, как показано на рисунке 8, после чего их перемещение в ходе оперативного вмешательства не требовалось. Согласно полученному нами ранее собственному опыту работы с новой роботизированной системой Senhance, а также данным литературы, система позволяет эргономично выполнять отдельные этапы оперативного вмешательства с роботической ассистенцией, а другие — лапароскопически, в зависимости от удобства и предпочтений хирурга. Таким образом, во время оперативного вмешательства осуществлялся запланированный переход на лапароскопический доступ для выполнения отдельных этапов, и обратно, без потери времени и необходимости смены инструментов.

Переключение роботических инструментов на «руках» робота при необходимости осуществляет ассистент, а процесс переключения занимает не более минуты. Хирургический блок управления роботической системой находится в пределах операционной, что позволяет хирургу, управляя манипуляторами и камерой, руководить действиями бригады у стола под прямым визуальным контролем.

Нам представляется, что особые преимущества роботизированной поддержки наиболее важны при выполнении диссекции в узких анатомических пространствах малого таза, наложении ручного интракорпорального шва, а также работе в пределах одной анатомической области. Данные о методике

Рисунок 5. Выполнение монополярной диссекции в области ректовагинальной фасции: прямая кишка отведена атравматичным зажимом каудально

Figure 5. Performing a monopolar dissection in the rectovaginal fascia: the rectum is withdrawn by an atraumatic clamp caudally

Рисунок 6. Введение сетчатого импланта в брюшную полость и фиксация его дистального конца отдельными узловыми швами

Figure 6. Insertion of a mesh implant into the abdominal cavity and fixation of its distal end with separate nodular sutures

Рисунок 7. Фиксация проксимального конца сетчатого импланта к передней продольной связке позвоночника в области мыса крестца

Figure 7. Fixation of the proximal end of the mesh implant to the anterior longitudinal ligament of the spine in the area of the sacrum

Таблица 1. Робот-ассистированные и лапароскопические этапы выполнения вентральной ректопексии сетчатым имплантом

Table 1. Robot-assisted and laparoscopic stages of performing ventral rectopexy with a mesh implant

Операция	Роботический этап	Лапароскопический этап
Вентральная	3 — диссекция по передней поверхности прямой	1 — установка троакаров;
ректопексия	кишки в ректовагинальном пространстве, выделение	2 — висцеролиз;
сетчатым имплантом	и сохранение сосудисто-нервных структур;	4 — введение сетчатого импланта в брюшную полость,
	6 — наложение ручного эндокорпорального шва	его позиционирование;
	для фиксации сетчатого импланта к мезоректуму	5 — введение лигатур в брюшную полость.
	по передней поверхности прямой кишки и к передней	
	продольной связке в области мыса крестца;	
	7 — перитонизация.	

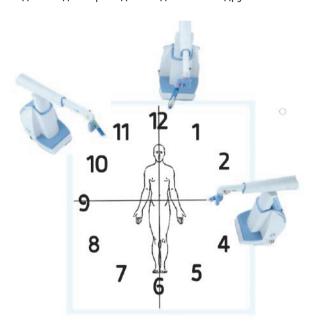

Таблица 2. Продолжительность робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием системы Senhance

Table 2. Duration of robot-assisted ventral rectopexy with a mesh implant using the Senhance system

Среднее общее время операции, мин. (min-max)	87,1 (65–100)
Среднее время докинга, мин. (min-max)	9 (8–10)
Среднее время за консолью, мин. (min-max)	56,5 (51–68)
Среднее время завершения операции — от момента отключения робота до закрытия кожи, мин. (min-max)	11,4 (10–16)

РЕЗУЛЬТАТЫ

По данным анализа непосредственных результатов хирургического лечения средняя длительность оперативного вмешательства составила 87.1 ± 24.3 мин. Нами раздельно было зафиксировано время, необходимое для проведения докинга и других этапов

Рисунок 8. Расположение роботических рукманипуляторов: Рука 1 (оптическая система) на 12 ч у.ц.; Рука 2 (правая рука оператора) 10 ч у.ц.; Рука 3 (левая рука оператора) 4 ч у.ц.

Figure 8. Location of robotic arm manipulators: Arm 1 (optical system) for 12h; Arm 2 (operator's right hand) 10 h; Hand 3 (operator's left hand) 4 h

робот-ассистированных операций. Средние данные о продолжительности каждого из этапов работы представлены в таблице 2.

Объем интраоперационной кровопотери составил 19.8 ± 9.6 мл. Осложнений, требующих хирургического лечения, а также анатомических рецидивов при контрольном осмотре выявлено не было. Медиана периода наблюдение составила 20.4 месяцев (7–22 мес.). Непосредственные результаты хирургического лечения больных представлены в обобщенном виде в таблице 3.

В раннем послеоперационном периоде пациенты находились в отделении APO до полной стабилизации витальных функций в течение 2 часов, после чего переводились в палату профильного отделения. Пероральное употребление жидкости начинали в первые сутки, прием пищи — на вторые. На первые сутки после оперативного лечения проводили оценку степени выраженности болевого синдрома по визуально-аналоговой шкале, средний балл составил 22,5 (8–31) мм. Средняя длительность госпитализации после робот-ассистированной вентральной ректопексии сетчатым имплантом — 3,7 (2–5) суток.

В ходе работы с системой незапланированных конверсий с робот-ассистированного на мануальное лапароскопическое оперирование или перехода в открытый доступ не было.

ОБСУЖДЕНИЕ

Роботическая система для цифровой лапароскопии Senhance имеет ряд технических преимуществ, таких как тактильная обратная связь, система наведения камеры взглядом оператора, эргономичность работы

Таблица 3. Обобщенные результаты робот-ассистированной вентральной ректопексии сетчатым имплантом с использованием системы Senhance

Table 3. Generalized results of robot-assisted ventral rectopexy with a mesh implant using the Senhance system

Средний объем интраоперационной кровопотери, мл	19,8 ± 9,6
Интраоперационные осложнения	0
Частота незапланированных конверсий на открытую/лапароскопическую хирургию, %	0
Длительность пребывания в АРО, часы	2
Послеоперационные осложнения по Clavien-Dindo	0
Послеоперационная летальность, %	0
Болевой синдром на 1 сутки по ВАШ, мм	22,5 (8-31)
Рецидив при контрольных осмотрах, %	0

для хирурга и многоразовые инструменты, совместимые с обычными лапароскопическими инструментами, что значительно снижает стоимость лечения и упрощает процесс интеграции системы в работу операционного блока, возможность использования троакаров диаметром 3 мм и 5 мм, что позволяет снизить травматичность вмешательства, а время смены инструментов или конверсии на лапароскопический доступ составляет менее минуты.

На момент публикации данной статьи в доступной литературе при поиске по базам данных PubMed, MEDLINE, EMBASE, Scopus, Cochrane library, CENTRAL, ISI Web of Science и eLibrary за период времени до августа 2023 года не было представлено опыта выполнения вентральной ректопексии сетчатым имплантом с использованием системы Senhance. Ряд исследователей сообщают о применении данной роботической системы в колоректальной хирургии, преимущественно в лечении онкологических заболеваний. Так, Spinelli et al. впервые сообщили об успешном одноцентровом опыте применения системы Senhance, безопасности и эффективности различных типов операций, в том числе колоректальных [28]. Samalavicius et al. сообщили о 13 случаях оперативного лечения рака ободочной кишки с применением новой робот-ассистированной лапароскопии и заключили, что система удобна и сопоставима по результатам с традиционной лапароскопией [29]. Нами был опубликован первый собственный опыт использования системы, в том числе в колоректальной хирургии [30]. Sasaki et al. в 2022 году опубликовали результаты хирургического лечения 55 случаев колоректального рака и отмечают отличные результаты применения системы [31]. Группа ученых из Беларуси под руководством Слободина Ю.В. сообщают, что работа на роботической системе Senhance, Trans Enterix при выполнении колоректальной хирургии удобна, безопасна и эффективна [32]. Linet al. поделились успешными результатами лечения 46 пациентов [33], a Darwich et al опубликовали детальную технику хирургического лечения дивертикулярной болезни ободочной кишки на примере 12 пациентов [34].

В настоящем исследовании на собственном опыте показана практическая возможность выполнения вентральной ректопексии сетчатым имплантом с помощью роботической системы Senhance, а также наложения интракорпорального шва, прецизионной диссекции в узких пространствах малого таза.

Исследование имеет ряд ограничений, в частности, малое число случаев, а также отсутствие собственного опыта работы с другими роботизированными системами для проведения прямого сравнения между ними и сопоставления с традиционной лапароскопией. Однако использование многоразового инструментария и возможности интеграции в существующую операционную снижают экономические затраты на выполнение PBP с применением системы Senhance, что обусловливает целесообразность данного доступа.

ЗАКЛЮЧЕНИЕ

Выполнение робот-ассистированной вентральной ректопексии с использованием системы Senhance эффективно и безопасно для пациента. Непосредственные результаты применения роботического доступа сопоставимы с лапароскопическим. Однако использование системы цифровой лапароскопии Senhance является экономически целесообразным при выполнении вентральной ректопексии сетчатым имплантом в отношении снижения затрат в сравнении с другими роботическими системами.

УЧАСТИЕ АВТОРОВ

Концепция и дизайн исследования: Хитарьян А.Г., Головина А.А.

Сбор и обработка материала: Головина А.А., Велиев К.С., Межунц А.В., Орехов А.А., Алибеков А.З., Хитарьян В.А., Оплимах К.С.

Статистическая обработка: Головина А.А., Хитарьян В.А., Оплимах К.С.

Написание текста: *Хитарьян А.Г., Головина А.А.* Редактирование: *Хитарьян А.Г., Головина А.А.*

AUTHORS CONTRIBUTION

Concept and design of the study: Alexander G. Khitaryan, Anastasiya A. Golovina

Collection and processing of material: Anastasiya A. Golovina, Kamil S. Veliev, Arut V. Mezhunts, Albert Z. Alibekov, Alexey A. Orekhov, Vera A. Khitaryan, Kseniya S. Oplimah

Statistical processing: Anastasiya A. Golovina, Kseniya S. Oplimah, Vera A. Khitaryan

Text writing: Alexander G. Khitaryan, Anastasiya A. Golovina

Editing: Alexander G. Khitaryan, Anastasiya A. Golovina

СВЕДЕНИЯ ОБ АВТОРАХ (ORCID)

Хитарьян Александр Георгиевич — д.м.н., проф., зав. кафедрой хирургических болезней №3 ФГБОУ ВО «РостГМУ»; заведующий хирургическим отделением ЧУЗ «Клиническая больница «РЖД-Медицина»; ORCID: 0000-0002-2108-2362

Головина Анастасия Андреевна — врач-хирург ЧУЗ «Клиническая больница «РЖД-Медицина», г. Ростов-на-Дону; аспирант кафедры хирургических болезней № 3 ФГБОУ ВО «РостГМУ»; ОRCID: 0000-0001-5647-1192

Велиев Камиль Савинович — врач-хирург ЧУЗ «Клиническая больница «РЖД-Медицина»; ORCID: 0000-0002-0078-260X

Межунц Арут Ваграмович — к.м.н., врач-хирург ЧУЗ «Клиническая больница «РЖД-Медицина», г. Ростов-на-Дону; ассистент кафедры хирургических болезней №3 ФГБОУ ВО «РостГМУ»; ОRCID: 0000-0001-7787-4919

Алибеков Альберт Заурбекович — к.м.н., доцент кафедры хирургических болезней №3 ФГБОУ ВО «РостГМУ»; ORCID: 0000-0003-4724-3774

Орехов Алексей Анатольевич — к.м.н., доцент кафедры хирургических болезней №3 ФГБОУ ВО «РостГМУ», врач-хирург ЧУЗ «Клиническая больница «РЖД-Медицина»; ORCID: 0000-0002-9508-5179 Хитарьян Вера Александровна — студент ФГБОУ ВО «РостГМУ»

Оплимах Ксения Сергеевна — ординатор кафедры хирургических болезней № 3 ФГБОУ ВО «РостГМУ»; ORCID: 0000-0001-5632-1469

INFORMATION ABOUT AUTHORS (ORCID)

Alexander G. Khitaryan — 0000-0002-2108-2362 Anastasiya A. Golovina — 0000-0001-5647-1192 Kamil S. Veliev — 0000-0002-0078-260X Arut V. Mezhunts — 0000-0001-7787-4919 Albert Z. Alibekov — 0000-0003-4724-3774 Alexey A. Orekhov — 0000-0002-9508-5179 Vera A. Khitaryan — n/a Kseniya S. Oplimah — 0000-0001-5632-1469

ЛИТЕРАТУРА/REFERENCES

- 1. D'Hoore A, Cadoni R, Penninckx F. Long-term outcome of laparoscopic ventral rectopexy for total rectal prolapse. *Br J Surg*. 2004;91:1500–1505. doi: 10.1002/bjs.4779
- 2. Faucheron JL, Trilling B, Girard E, et al. Anterior rectopexy for full-thickness rectal prolapse: technical and functional results. *World J Gastroenterol.* 2015;21:5049–5055. doi: 10.3748/wjg.v21.i16.5049 3. van Iersel JJ, Paulides TJ, Verheijen PM, et al. Current status of laparoscopic and robotic ventral mesh rectopexy for external and
- laparoscopic and robotic ventral mesh rectopexy for external and internal rectal prolapse. *World J Gastroenterol*. 2016;22:4977–4987. doi: 10.3748/wjg.v22.i21.4977
- 4. Formijne Jonkers HA, Poierrié N, Draaisma WA, et al. Laparoscopic ventral rectopexy for rectal prolapse and symptomatic rectocele: an analysis of 245 consecutive patients. *Colorectal Dis.* 2013;15:695–699. doi: 10.1111/codi.12113
- 5. Consten EC, van Iersel JJ, Verheijen PM, et al. Long-term outcome after laparoscopic ventral mesh rectopexy: an observational study of 919 consecutive patients. *Ann Surg.* 2015;262:742–747. doi: 10.1097/SLA.000000000001401
- 6. Damle A, Damle RN, Flahive JM, et al. Diffusion of technology: trends in robotic-assisted colorectal surgery. *Am J Surg*. 2017;214:820–824. doi: 10.1016/j.amjsurg.2017.03.020
- 7. Munz Y, Moorthy K, Kudchadkar R, et al. Robotic assisted rectopexy. *Am J Surg*. 2004;187:88–92. doi: 10.1016/j.amjsurg.2002.11.001
- 8. Bao X, Wang H, Song W, et al. Meta-analysis on current status, efficacy, and safety of laparoscopic and robotic ventral mesh rectopexy for rectal prolapse treatment: can robotic surgery become the gold standard? *Int J Colorectal Dis.* 2021;36:1685–1694. doi: 10.1007/s00384-021-03885-y

- 9. Laitakari KE, Mäkelä-Kaikkonen JK, Pääkkö E, et al. Restored pelvic anatomy is preserved after laparoscopic and robot-assisted ventral rectopexy: MRI-based 5-year follow-up of a randomized controlled trial. *Colorectal Dis.* 2020;22:1667–1676. doi: 10.1111/codi.15195
- 10. Mäkelä-Kaikkonen J, Rautio T, Pääkkö E, et al. Robot-assisted vs laparoscopic ventral rectopexy for external or internal rectal prolapse and enterocele: a randomized controlled trial. *Colorectal Dis.* 2016;18:1010–1015. doi: 10.1111/codi.13309
- 11. Faucheron JL, Trilling B, Girard E. Robotic ventral mesh rectopexy for rectal prolapse: a few years until this becomes the gold standard. *Tech Coloproctol*. 2019;23:407–409. doi: 10.1007/s10151-010.02016.8
- 12. Mantoo S, Podevin J, Regenet N, et al. Is robotic-assisted ventral mesh rectopexy superior to laparoscopic ventral mesh rectopexy in the management of obstructed defaecation? *Colorectal Dis.* 2013;15:e469–e475. doi: 10.1111/codi.12251
- 13. Mäkelä-Kaikkonen J, Rautio T, Kairaluoma M, et al. Does ventral rectopexy improve pelvic floor function in the long term? *Dis Colon Rectum.* 2018;61:230–238. doi: 10.1097/DCR.0000000000000974
- 14. Laitakari KE, Mäkelä-Kaikkonen JK, Kössi J, et al. Mid-term functional and quality of life outcomes of robotic and laparoscopic ventral mesh rectopexy: multicenter comparative matched-pair analyses. *Tech Coloproctol*. 2022;26:253–260. doi: 10.1007/s10151-021-02563-z
- 15. Ayav A, Bresler L, Hubert J, et al. Robotic-assisted pelvic organ prolapse surgery. *Surg Endosc.* 2005;19:1200–1203. doi: 10.1007/s00464-004-2257-5
- 16. Corcione F, Esposito C, Cuccurullo D, et al. Advantages and limits

ОРИГИНАЛЬНЫЕ CTATЬИ ORIGINAL ARTICLES

of robot-assisted laparoscopic surgery: preliminary experience. Surg Endosc. 2005;19:117–119. doi: 10.1007/s00464-004-9004-9

- 17. van der Schans EM, Verheijen PM, Moumni ME, et al. Evaluation of the learning curve of robot-assisted laparoscopic ventral mesh rectopexy. *Surg Endosc.* 2022;36:2096–2104. doi: 10.1007/s00464-021-08496-w
- 18. Perrenot C, Germain A, Scherrer ML, et al. Long-term outcomes of robot-assisted laparoscopic rectopexy for rectal prolapse. *Dis Colon Rectum*. 2013;56:909–914. doi: 10.1097/DCR.0b013e318289366e
- 19. Mehmood RK, Parker J, Bhuvimanian L, et al. Short-term outcome of laparoscopic versus robotic ventral mesh rectopexy for full-thickness rectal prolapse. Is robotic superior? *Int J Colorectal Dis*. 2014;29:1113–1118. doi: 10.1007/s00384-014-1937-4
- 20. Albayati S, Chen P, Morgan MJ, et al. Robotic vs. laparoscopic ventral mesh rectopexy for external rectal prolapse and rectal intussusception: a systematic review. *Tech Coloproctol.* 2019;23:529–535. doi: 10.1007/s10151-019-02014-w
- 21. Ramage L, Georgiou P, Tekkis P, et al. Is robotic ventral mesh rectopexy better than laparoscopy in the treatment of rectal prolapse and obstructed defecation? A meta-analysis. *Tech Coloproctol*. 2015;19:381–389. doi: 10.1007/s10151-015-1320-7
- 22. Heemskerk J, de Hoog DE, van Gemert WG, et al. Robot-assisted vs. conventional laparoscopic rectopexy for rectal prolapse: a comparative study on costs and time. *Dis Colon Rectum*. 2007;50:1825–1830. doi: 10.1007/s10350-007-9017-2
- 23. Mäkelä-Kaikkonen J, Rautio T, Klintrup K, et al. Robotic-assisted and laparoscopic ventral rectopexy in the treatment of rectal prolapse: a matched-pairs study of operative details and complications. *Tech Coloproctol.* 2014;18:151–155. doi: 10.1007/s10151-013-1042-7
- 24. Rondelli F, Bugiantella W, Villa F, et al. Robot-assisted or conventional laparoscoic rectopexy for rectal prolapse? Systematic review and meta-analysis. *Int J Surg.* 2014;12(Suppl 2):S153–S159. doi: 10.1016/j.ijsu.2014.08.359
- 25. Воробьев Г.И. Основы колопроктологии. М.: МИА. 2006; c. 193—208. / Vorobiev G.I. Fundamentals of coloproctology. Moscow: MIA. 2006; pp.193-208. (in Russ.).
- 26. Persu C, Chapple CR, Cauni V, et al. Pelvic Organ Prolapse

- Quantification System (POP-Q) a new era in pelvic prolapse staging. *Journal of Medicine and Life*. (2011;4(1):75–81. PMID 21505577. 27. Wael Sohl and Steven D. Wexner Pelvic Floor Dysfunction. Springer, London. 2008; Chapter 14-2, pp. 353-357.
- 28. Spinelli A, David G, Gidaro S, et al. First experience in colorectal surgery with a new robotic platform with haptic feedback. *Colorectal Dis.* March 2018; 20(3), 228-235. doi: 10.1111/codi.13882
- 29. Samalavicius NE, Janusonis V, Siaulys R, et al. Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. *J Robot Surg.* 2020;14:371–376.
- 30. Хитарьян А.Г., Матвеев Н.Л., Велиев К.С., и соавт. Первый клинический опыт использования новой телеуправляемой роботизированной системы Senhance в общей хирургии в России. Хирургия. Журнал им. Н.И. Пирогова. 2022;(9):5-13. / Khitaryan A.G., Matveev N.L., Veliyev K.S., et al. The first clinical experience of using the new remote-controlled robotic Senhance system in general surgery in Russia. Surgery. Journal named after N.I. Pirogov. 2022;(9):5-13. (in Russ.).
- 31. Sasaki M, Hirano Y, Yonezawa H, et al. Short-term results of robotassisted colorectal cancer surgery using Senhance Digital Laparoscopy System. *Asian J Endosc Surg.* 2022;15(3):613-618. doi: 10.1111/ases.13064
- 32. Слободин Ю.В., Кухарчик М.С., Сидоров С.А. Колоректальная хирургия с использованием роботической системы Senhance, Trans Enterix (США). Опыт центра. *Евразийский онкологический журнал*. 2019;7(2):259. / Slobodin Yu.V., Kukharchik M.S., Sidorov S.A. Colorectal surgery using the Senhance robotic system, Trans Enterix (USA). The experience of the center. *Eurasian Journal of Oncology*. 2019;7(2):259. (in Russ.).
- 33. Lin CC, Huang SC, Lin HH, et al. An early experience with the Senhance surgical robotic system in colorectal surgery: a single-institute study. *Int J Med Robot*. 2021;17:e2206. doi: 10.1002/rcs.2206
- 34. Darwich I, Stephan D, Klöckner-Lang M, et al. A roadmap for robotic-assisted sigmoid resection in diverticular disease using a Senhance™ Surgical Robotic System: results and technical aspects. *J Robotic Surg.* 2020;14:297–304. doi: 10.1007/s11701-019-00980-9